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Abstract

This is a sequel of [2] on the development of derived contact geometry. In [2], we formally
introduced shifted contact structures on derived stacks. We then gave a Darboux-type theorem
and the notion of symplectification only for negatively shifted contact derived schemes.

In this paper, we extend the results of [2] from derived schemes to derived Artin stacks
and provide some examples of contact derived Artin stacks. In brief, we first show that for
k < 0, every k-shifted contact derived Artin stack admits a contact Darboux atlas. Secondly,
we canonically describe the symplectification of a derived Artin stack equipped with a k-shifted
contact structure, where k < 0. Lastly, we give several constructions of contact derived stacks
using certain cotangent stacks and shifted prequantization structures.
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1. Introduction and summary

As a relatively popular mainstream in the literature, generalized versions of certain familiar geo-
metric structures have been introduced and studied in the context of derived algebraic geometry.
For example, [9, 4] focus on shifted Symplectic and Poisson geometries. Furthermore, [3, 6, 1]
provide some applications and local constructions.

In [2], on the other hand, we formally described shifted contact structures on derived (Artin)
stacks and investigated some interesting consequences, such as a Darboux-type theorem and
the process of canonical symplectification for negatively shifted contact derived schemes. These
observations essentially motivate us to make further investigations of contact structures in the
context of derived algebraic/symplectic geometry.

Regarding the study of shifted contact structures, we note that Maglio, Tortorella and
Vitagliano [8] have recently introduced and studied 0-shifted and +1-shifted contact structures
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on differentiable stacks, thus providing the foundations of shifted contact geometry in the stacky
context.

For shifted symplectic derived schemes, in particular, it has been shown in [3, Theorem 5.18]
that every k-shifted symplectic derived K-scheme (X, ω′), with k < 0, is Zariski locally equivalent
to (SpecA,ω) for a pair A,ω in certain symplectic Darboux form [3, Examples 5.8, 5.9 & 5.10].

In [1], Ben-Bassat, Brav, Bussi, and Joyce extend the results of [3] from derived schemes to
the case of derived Artin K-stacks. In this regard, [1, Theorem 2.8] first proves that derived
Artin K-stacks also have nice atlases in terms of standard form cdgas. Then it is shown in [1,
Theorem 2.10] that every k-shifted symplectic derived Artin K-stack, with k < 0, admits the
so-called Darboux form atlas; hence, one has a Darboux-type theorem in this case as well. These
results, with some side outcomes, motivate the current work.

Main results and the outline. In this work, with the same spirit as above, our goals are
to extend the results of [2] from derived schemes to derived Artin stacks and to provide several
constructions of contact derived stacks.

Recall that, in [2], we introduced shifted contact structures on derived stacks and proved
the following results, but only for (locally finitely presented) negatively shifted contact derived
K-schemes. In brief, we showed:

Theorem 1.1. Let X be a (locally finitely presented) derived K-scheme.
a. [2, Theorem 3.13] Every k-shifted contact structure on X, with k < 0, is locally equivalent

to (SpecA,α0) for A a minimal standard form cdga and α0 in a contact Darboux form.

b. [2, Theorem 4.7] Write SX for the total space of a certain Gm-bundle over X, constructed
from the data of k-shifted contact structure on X. Then SX is a derived stack equipped
with a k-shifted symplectic form ωX, which is canonically determined by the shifted contact
structure of X. We then call the pair (SX, ωX) the symplectification of X.

In this paper, we extend Theorem 1.1 to the case of derived Artin K-stacks as conjectured
in [2]. In addition to that, we also provide several examples of contact derived stacks. In short,
the following theorems outline the main results of this paper:

Theorem 1.2. Theorem 1.1 also holds true for negatively shifted contact derived Artin K-stacks
locally of finite presentation (cf. Theorems 3.7 & 3.9).

Theorem 1.3. Let X be a derived Artin K-stack locally of finite presentation. Denote by Ga,Gm

the affine additive and multiplicative group schemes, respectively. (See Sections 4.1 and 4.2.)
1. Let T∗[n]X be the n-shifted cotangent stack. Then the space J1[n]X = T∗[n]X × Ga[n],

called the n-shifted 1-jet stack of X, carries an n-shifted contact structure.

2. Let πX : T∗X → X be the natural projection. Given a prequantum 0-shifted Lagrangian
fibration structure on πX, there is a Gm-bundle on T∗X with a 0-shifted contact structure.

3. Let πc1(G) : T
∗
c1(G)X→ X be the c1(G)-twisted cotangent stack of X, where c1(G) ∈ A1(X, 1)

denotes the characteristic class of a 0-gerbe G - a line bundle - on X. Given a prequantum
0-shifted Lagrangian fibration structure on πc1(G), there is a Gm-bundle on T∗

c1(G)X that
carries a 0-shifted contact structure.

4. Assume that G is a simple algebraic group over K, and C be a smooth and proper curve/K.
Then there is a Gm-bundle on LocSysG(C) with a 0-shifted contact structure.
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Now, let us describe the content of this paper in more detail and provide an outline. In
Section 2, we review derived symplectic/contact geometries and the Darboux models (for derived
schemes). In Section 3, we will concentrate on the stacky generalizations. In short, Section 3.1
outlines the Darboux models for negatively shifted symplectic derived Artin stacks. With the
same spirit, in Section 3.2, we consider the contact case and give the proof of Theorem 1.2 (cf.
Theorems 3.7 & 3.9). Finally, Section 4 provides several examples of contact derived stacks (with
some background material on prequantization) and proves Theorem 1.3. (See Sections 4.1, 4.2.2,
4.2.3, 4.2.4.) We also have two appendices presenting some relevant constructions omitted in the
main text.

Conventions. Throughout the paper, K will be an algebraically closed field of characteristic
zero. All cdgas will be graded in nonpositive degrees and over K. We assume that all classical
K-schemes are locally of finite type, and that all derived K-schemes/stacks X are locally finitely
presented.

2. Recollection

2.1 Some derived algebraic geometry We provide a quick review on derived algebraic
geometry. For details, we refer to [11, 12, 7].

In this paper, we essentially use the functorial approach to define (higher) spaces of interest.
It is very well known that using Yoneda’s embedding, spaces can be thought of as sheaves in
addition to the standard ringed-space formulation. In brief, we have the following diagram [13]:

CAlgK Sets

Grpds

cdgaK Ssets.

schemes

stacks

higher stacks

derived stacks (1)

Here, CAlgK denotes the category of commutative K-algebras, and cdgaK is the ∞-category1

of commutative differential graded K-algebras in non-positive degrees. Denote by StK the ∞-
category of (higher) K-stacks, where objects in StK are defined via Diagram 1 above.

Recall that, in the underived setup, we have the classical “spectrum functor"

spec : (CAlgK)
op → StK.

We then call an object X of StK an affine K-scheme if X ≃ specA for some A ∈ CAlgK; and a
K-scheme if it has an open cover by affine K-schemes. In DAG, there also exists an appropriate
concept of a spectrum functor2

Spec : cdgaopK → dStK,

which leads to the following definitions.

1We actually mean the ∞-category associated to the model category cdgaK, with its natural model structure for
which equivalences are quasi-isomorphisms, and fibrations are epimorphisms in strictly negative degrees.
2In brief, it is the right adjoint to the global algebra of functions functor Γ : dStK ⇆ cdgaop

K : Spec.
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Definition 2.1. Denote by dStK the ∞-category of derived stacks, where an object X of
dStK is given as a certain ∞-functor3 X : cdgaK → Ssets as in Diagram 1. More precisely,
objects in dStK are simplicial presheaves on the site (dAff)op ≃ cdgaK satisfying a descent
condition. For more details, we refer to [12].

Definition 2.2. An object X in dStK is called an affine derived K-scheme if X ≃ SpecA

for some cdga A ∈ cdgaK. An object X in dStK is then called a derived K-scheme if it can
be covered by Zariski open affine derived K-schemes Y ⊂ X. Denote by dSchK ⊂ dStK the
full ∞-subcategory of derived K-schemes, and we simply write dAffK ⊂ dSchK for the full
∞-subcategory of affine derived K-schemes.

Nice local models for derived K-schemes. Let us first recall some basic concepts.

Definition 2.3. A ∈ cdgaK is of standard form if A0 is a smooth finitely generated K-algebra;
the module Ω1

A0 of Kähler differentials is free A0-module of finite rank; and the graded algebra
A is freely generated over A0 by finitely many generators, all in negative degrees.

In fact, there is a systematic way of constructing such cdgas starting from a smooth K-algebra
A0 := A(0) via the use of a sequence of localizations. More precisely, for any given n ∈ N, we
can inductively construct a sequence of cdgas

A(0)→ A(1)→ · · · → A(i)→ · · ·A(n) =: A, (2)

where A0 := A(0), and A(i) is obtained from A(i−1) by adjoining generators in degree −i, given
by M−i, for all i. Here, each M−i is a free finite rank module (of degree −i generators) over
A(i− 1). Therefore, the underlying commutative graded algebra of A = A(n) is freely generated
over A(0) by finitely many generators, all in negative degrees −1,−2, . . . ,−n. For more details,
we refer to [3, Example 2.8].

Definition 2.4. A standard form cdga A is said to be minimal at p ∈ specH0(A) if A = A(n) is
defined by using the minimal possible numbers of graded generators in each degree ≤ 0 compared
to all other cdgas locally equivalent to A near p.

Definition 2.5. Let A be a standard form cdga. A′ ∈ cdgaK is called a localization of A if A′

is obtained from A by inverting an element f ∈ A0, by which we mean A′ = A⊗A0 A0[f−1].
A′ is then of standard form with A′0 ≃ A0[f ]. If p ∈ specH0(A) with f(p) ̸= 0, we say A′ is

a localization of A at p.

With these definitions in hand, one has the following observations:

Observation 2.6. Let A be a standard form cdga. If A′ is a localization of A, then SpecA′ ⊂
SpecA is a Zariski open subset. Likewise, if A′ is a localization of A at p ∈ specH0(A) ≃
τ(SpecA), then SpecA′ ⊂ SpecA is a Zariski open neighborhood of p.

Observation 2.7. Let A be a standard form cdga, then there exist generators x−i
1 , x−i

2 , · · · , x−i
mi

in A−i (after localization, if necessary) with i = 1, 2, · · · , k and mi ∈ Z≥0 such that

A = A(0)
[
x−i
j : i = 1, 2, . . . , k, j = 1, 2, . . . ,mi

]
, (3)

3Using Yoneda’s lemma, for a derived stack X, we have X : A 7→ X(A) ≃ MapdStkK(SpecA,X), and hence any
A-point p ∈ X(A) can be seen as a morphism p : SpecA → X of derived stacks.
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where the subscript j in xij labels the generators, and the superscript i indicates the degree of
the corresponding element. So, we can consider A as a graded polynomial algebra over A(0) on
finitely many generators, all in negative degrees.

The following theorem outlines the central results from [3, Theorem 4.1 & 4.2] concerning
the construction of useful local algebraic models for derived K-schemes. The upshot is that given
a derived K-scheme X (locally of finite presentation) and a point x ∈ X, one can always find
a “refined" affine neighborhood SpecA of x, which is very useful for explicit presentations. In
short, we have:

Theorem 2.8. Every derived K-scheme X is Zariski locally modelled on SpecA for a minimal
standard form cdga A.

Nice local models for cotangent complexes of derived schemes. GivenA ∈ cdgaK, d on
A induces a differential on Ω1

A, denoted again by d. This makes Ω1
A into a dg-module (Ω1

A, d)

with the property that δ ◦ d = d ◦ δ, where δ : A→ Ω1
A is the universal derivation of degree zero.

Write the decomposition of Ω1
A into graded pieces Ω1

A =
⊕0

k=−∞
(
Ω1
A

)k with the differential
d :

(
Ω1
A

)k −→ (
Ω1
A

)k+1. Then we define the de Rham algebra of A as a double complex

DR(A) = SymA(Ω
1
A[1]) ≃

∞⊕
p=0

0⊕
k=−∞

(
ΛpΩ1

A

)k
[p], (4)

where the gradings p, k are called the weight and the degree, respectively. Also, there are two
differentials on DR(A), namely the internal differential d :

(
ΛpΩ1

A

)k
[p] −→

(
ΛpΩ1

A

)k+1
[p] and

the de Rham differential ddR :
(
ΛpΩ1

A

)k
[p] −→

(
Λp+1Ω1

A

)k
[p+ 1] such that dtot = d+ ddR and

d2 = d2dR = 0, and d ◦ ddR = −ddR ◦ d. (5)

Here, one also has the natural multiplication on DR(A):(
ΛpΩ1

A

)k
[p]×

(
ΛqΩ1

A

)ℓ
[q] −→

(
Λp+qΩ1

A

)k+ℓ
[p+ q]. (6)

Note that even if both LA and Ω1
A are closely related, the identification of LA with Ω1

A is
not true for an arbitrary A ∈ cdgaK [3]. But, when A = A(n) is a standard form cdga, we have
the following description for the restriction of the cotangent complex LA to specH0(A). In this
paper, we only give a brief version. More details and the proof can be found in [3, Prop. 2.12].

Proposition 2.9. If A = A(n) with n ∈ N is a standard form cdga constructed inductively as in
(2), then the restriction of LA to specH0(A) is represented by a complex of free H0(A)-modules.

2.2 Derived symplectic geometry and local models Pantev et al. [9] define the simplicial
sets of p-forms of degree k and closed p-forms of degree k on derived stacks. Denote these
simplicial sets by Ap(X, k) and Ap,cl(X, k), respectively. These definitions are in fact given first
for affine derived K-schemes. Later, both concepts are defined for general derived stacks X in
terms of mapping stacks Ap(−, k) and Ap,cl(−, k), respectively.

The space Ap,cl(X, k) of closed p-forms on a general derived stack X can be a rather com-
plicated even when X is a nice derived Artin stack. However, [9, Prop. 1.14] gives the following
identification for the space Ap(X, k) of k-shifted p-forms:

Ap(X, k) ≃MapQCoh(X)(OX ,∧pLX [k]).



108 Berktav, Higher Structures 9(2):103–135, 2025.

Let X = SpecA with A a standard form cdga4, then take ΛpLA = ΛpΩ1
A. Therefore, elements

of Ap(X, k) form a simplicial set such that k-cohomology classes of the complex
(
ΛpΩ1

A, d
)

corre-
spond to the connected components of this simplicial set. Likewise, the connected components of
Ap,cl(X, k) are identified with the k-cohomology classes of the complex

∏
i≥0

(
Λp+iΩ1

A[−i], dtot
)
.

Then we have:

Definition 2.10. Let X = SpecA be an affine derived K-scheme for A a minimal standard form
cdga. A k-shifted p-form on X for p ≥ 0 and k ≤ 0 is an element ω0 ∈

(
ΛpΩ1

A

)k with dω0 = 0.

Note that an element ω0 defines a cohomology class [ω0] ∈ Hk
(
ΛpΩ1

A, d
)
, where two p-forms

ω0
1, ω

0
2 of degrees k are equivalent if ∃α1,2 ∈

(
ΛpΩ1

A

)k−1 s.t. ω0
1 − ω0

2 = dα1,2.

Definition 2.11. Let X = SpecA be an affine derived K-scheme with A a minimal standard
form cdga. A closed k-shifted p-form on X for p ≥ 0 and k ≤ 0 is a sequence ω = (ω0, ω1, · · · )
with ωi ∈

(
Λp+iΩ1

A

)k−i such that dtotω = 0, which splits according to weights as dω0 = 0 in(
ΛpΩ1

A

)k+1 and ddRω
i + dωi+1 = 0 in

(
Λp+i+1Ω1

A

)k−i, i ≥ 0.

That is, a closed k-shifted p-form consists of an actual k-shifted p-form ω0 and the data (ωi)i>0

of ω0 being coherently ddR-closed. It then follows that there also exists a natural projection
morphism π : Ap,cl(X, k) −→ Ap(X, k), ω = (ωi)i≥0 7−→ ω0.

Definition 2.12. A closed k-shifted 2-form ω = (ωi)i≥0 on X = SpecA for a (minimal) standard
form cdga A is called a k-shifted symplectic structure if the induced map

ω0· : TA → Ω1
A[k], Y 7→ ιY ω

0,

is a quasi-isomorphism, where TA = (LA)
∨ ≃ HomA(Ω

1
A, A)

5 is the tangent complex of A. The
requirement for the induced map ω0· is called the non-degeneracy condition .

Symplectic Darboux models for derived schemes. One of the main theorems in [3] pro-
vides a k-shifted version of the classical Darboux theorem in symplectic geometry. The statement
is as follows.

Theorem 2.13. [3, Theorem 5.18] Given a derived K-scheme X with a k-shifted symplectic form
ω′ for k < 0 and x ∈ X, there is a local model

(
A, f : SpecA ↪→ X, ω

)
and p ∈ spec(H0(A))

such that f is an open inclusion with f(p) = x, A is a standard form that is minimal at p, and
ω is a k-shifted symplectic form on SpecA such that A,ω are in Darboux form, and f∗(ω′) ∼ ω

in A2,cl(X, k).

In fact, Theorem 2.13 shows that such ω can be constructed explicitly depending on the
integer k < 0. Indeed, there are three cases in total: (1) k is odd; (2) k/2 is even; and (3) k/2

is odd.
For instance, when k is odd, one can find a minimal standard form cdga A, with “coordinates"

x−i
j , yk+i

j ∈ A, and a Zariski open inclusion f : SpecA ↪→ X so that f∗(ω′) ∼ ω = (ω0, 0, 0, . . . ),
where ω0 =

∑
i,j ddRx

−i
j ddRy

k+i
j . We will not give any further detail on the aforementioned cases

in this paper. Instead, we refer to [3, Examples 5.8, 5.9, and 5.10].

4It should be noted that the results that are cited or to be proven in this section are all about the local structure
of derived schemes. Thus, it is enough to consider the (refined) affine case.
5Thanks to the identification LA ≃ (Ω1

A, d) for A a (minimal) standard form cdga.
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We just wish to present a result that plays a significant role in constructing Darboux-type local
models. The upshot is that one can always simplify the given closed 2-form ω = (ω0, ω1, ω2, . . . )

of degree k < 0 on SpecA so that ω0 can be taken to be exact and ωi = 0 for all i > 0. More
precisely, we have6:

Proposition 2.14. [3, Prop. 5.7] Let ω = (ω0, ω1, ω2, . . . ) be a closed 2-form of degree k < 0

on SpecA for A a standard form cdga over K. Then there exist H ∈ Ak+1 and ϕ ∈ (Ω1
A)

k such
that dH = 0 in Ak+2, ddRH + dϕ = 0 in (Ω1

A)
k+1, and ω ∼ (ddRϕ, 0, 0, . . . ).

2.3 Derived contact geometry and local models In this section, we review the central
constructions and results from [2]. In a nutshell, a k-shifted contact structure on a derived
Artin stack consists of a morphism f : K → TX of perfect complexes, a line bundle L such that
Cone(f) ≃ L[k], and a locally defined k-shifted 1-form α satisfying a non-degeneracy condition.
With this structure in hand, [2] presents a Darboux-type theorem and the process of canonical
symplectification for negatively shifted contact derived schemes.

2.3.1 Basic concepts Let us start with some terminology. Recall that the definition of a derived
Artin K-stack can be formalized by using an inductive construction [7, Section 5.1]. Roughly
speaking, we call X ∈ dStK a derived Artin K-stack if it can be locally represented by an affine
derived K-scheme with respect to the “smooth topology". Thus, we require the existence of a
“smooth" surjection φ : U → X (of some relative dimension m) so that U is a disjoint union of
affine derived schemes.

In order to the make sense of the smoothness of φ as above, we require that the fibers of
the morphism φ are already suitable geometric objects. To this end, one should start with some
subcategory S0, called 0-stacks, and then define Sn+1 to be the class of objects X in dStK having
a “smooth" surjection φ : U → X with U a disjoint union of affine derived schemes such that
each fiber U ×X SpecA lies in the class Sn.

Technically speaking, an object X ∈ dStK is called a derived Artin K-stack if it is m-geometric
for some m, and the underlying classical stack is 1-truncated (i.e. it is just a stack, not higher
stack). For details, we refer to [7, § 5.1] or [12, § 1.3.3].

The upshot is that any such object X of dStK comes with a smooth surjective morphism
φ : U → X with U a derived K-scheme. We call such morphism an atlas. Therefore, the
following definition will be sufficient for our purposes.

Definition 2.15. By a derived Artin K-stack , we mean an object X of dStK possessing an
atlas (smooth of some relative dimension) near each point of X.

Now, let us introduce shifted contact structures on derived Artin stacks:

Definition 2.16. Let X be a locally finitely presented derived (Artin) stack. A pre-k-shifted
contact structure on X is given by a shifted line bundle L[k] with a morphism α : TX → L[k].
Denote such a structure by (L[k], α).

Note that we can consider a pre-k-shifted contact data as a perfect complex K and a line
bundle L along with a morphism κ : K → TX such that Cone(κ) ≃ L[k]. Here, we have a cofiber
sequence K → TX → L[k] in QCoh(X). Since QCoh(X) is a stable ∞-category, the cocone of
TX → L[k] is equivalent to K. We then may denote a pre-k-shifted contact structure on X by
(K, κ, L).
6Based on the interpretation of such forms in the context of cyclic homology theory of mixed complexes [9, 3].
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Definition 2.17. A pre-k-shifted contact structure (K, κ, L) on X is a k-shifted contact struc-
ture if locally on X, where L is trivial, the induced k-shifted 1-form7 α : TX → OX[k] is such
that the map ddRα|K · := κ∨[k] ◦ (ddRα ·) ◦ κ : K → K∨[k] is a weak equivalence.

In that case, we say the k-shifted 2-form ddRα is non-degenerate on K. Also, we call such
local form a k-contact form .

Remark 2.18. When k ≤ 0, the triangle K → TX → L[k] splits locally for any affine derived
scheme (so, this also holds Zariski locally for any derived scheme)8. In fact, the nondegeneracy
condition implies that K has Tor-amplitude [0,−k] so that K[−k] is connective. Then the
connecting homomorphism L[k] → K[1] in the exact triangle is equivalently L → K[1 − k].
Notice that K[1− k] is concentrated in degrees ≤ −1, so this morphism is automatically zero on
any affine derived scheme, which implies the desired splitting.

Let X be a locally finitely presented derived Artin stack with a k-shifted contact structure
(K, κ, L). Recall from Yoneda’s lemma, X(A) ≃ MapdPstk(SpecA,X), and hence any A-point
p ∈ X(A) can be seen as a morphism p : SpecA→ X of derived pre-stacks. Then, let us consider
the pair (p, αp), with p ∈ X(A), αp ∈ p∗(LX[k]), such that Cocone(αp) ≃ K. For A ∈ cdgaK,
there is a Gm(A)-action on the pair (p, αp) by

f ◁ (p, αp) := (p, f · αp).

Denote by H0 the functor sending A 7→ H0(A). Denote the image under H0 of an element f

simply by f0. Note that localizing A if necessary, w.l.o.g. we may assume that the image f0 is
always invertible. It follows that f0 lies in (A0)×, which is by definition Gm(A0) = (A0)×.

Observation 2.19. If X, (p, αp), and the Gm(A)-action are as above, then for an element f ∈
Gm(A), we can obtain Cocone(f · αp) ≃ Cocone(αp) by using the invertibility of f.

From Proposition 2.9, on a refined affine neighborhood, say SpecA with A a minimal standard
form cdga, the perfect complexes TA,LA, when restricted to specH0(A), are both free finite
complexes of H0(A)-modules. In that case, Definitions 2.16 and 2.17, and Observation 2.19 will
reduce to the following local descriptions, where K is now just equivalent to the usual kerα in
ModA; and L in the splitting corresponds to the line bundle generated by the Reeb vector field
of the classical case.

More precisely, from [2, §3.2], when restricted to the (nice) local models, we equivalently have
the following proposition/definition:

Proposition 2.20. (Shifted contact structures with nice affine models) For a (minimal) standard
form cdga A and k < 0, any k-shifted contact structure on X = SpecA can be strictified in the
sense that the resulting contact data consists of

• a submodule K with the natural inclusion i : K ↪→ Der(A) such that Cone(i) ≃ coker(i) is
the quotient complex and of the form L[k], with L a line bundle; and

• a k-shifted 1-form α on SpecA with the property that K ≃ kerα so that the k-shifted 2-form
ddRα is non-degenerate on kerα.

Here Der(A) = (Ω1
A)

∨ = HomA(Ω
1
A, A), where Ω1

A is the A-module Kähler differentials such that
Ω1
A|specH0(A) is represented as a (bounded) complex of free H0(A)-modules by Proposition 2.9. In

7We can locally identify the map α with the induced shifted one-form using the trivialization of L∨[k].
8We thank the anonymous referee for this remark.
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that case, over p ∈ specH0(A), one has the splitting Der(A)|specH0(A) = kerα ⊕ L[k]|specH0(A).

Adopting the classical terminology, we sometimes call the sub-module kerα above a k-shifted
(strict) contact structure with the defining k-contact form α.

Example 2.21. (k-contact forms, with odd k < 0) In this example, fixing ℓ ∈ N, we will construct
a (minimal) standard form cdga carrying a k-shifted contact structure for k = −2ℓ − 1. In
brief, we will coherently extend the symplectic case [3, Example 5.8]. To this end, we make
use of similar notations and constructions from that example. Modifications for even shifts are
outlined in Appendix A.

Step-1: Construction of a “contact" cdga.Let A(0) be a smooth K-algebra of dimension
m0. Assume that there exist degree 0 variables x01, x

0
2, . . . , x

0
m0

in A(0) defining global étale
coordinates (x01, x02, . . . , x0m0

) : SpecA(0)→ Am0 on SpecA(0) such that ddRx01, . . . , ddRx0m0
form a

A(0)-basis for Ω1
A(0). Next, choosing non-negative integers m1, . . . ,mℓ, we define a commutative

graded algebra A to be the free graded K-algebra over A(0) generated by the variables

x−i
1 , x−i

2 , . . . , x−i
mi

in degree − i for i = 1, . . . , ℓ, (7)

yk+i
1 , yk+i

2 , . . . , yk+i
mi

in degree k + i for i = 1, . . . , ℓ, (8)

zk, yk1 , y
k
2 , . . . , y

k
m0

in degree k, (9)

such that Ω1
A is the free A-module of finite rank with basis {ddRx−i

j , ddRy
k+i
j , ddRz

k : ∀i, j}.
Here, we call zk the distinguished variable (of deg k). Also, we choose an element H ∈ Ak+1

satisfying the classical master equation

ℓ∑
i=1

mi∑
j=1

∂H

∂x−i
j

∂H

∂yk+i
j

= 0 in Ak+2. (10)

We call such H the Hamiltonian. Due to degree reasons, H does not involve any of zk, ykj ’s.
Then we define the internal differential d on A by the equations

d|A(0) = 0; dx−i
j =

∂H

∂yk+i
j

for all i > 0, j; dyk+i
j =

∂H

∂x−i
j

for all i, j; and

−kdzk = H + d
[∑

i,j

(−1)iix−i
j yk+i

j

]
. (11)

Notice that the condition on H implies d2 = 0 on each generator [3]. Also, we get vdim (A) = −1.
Step-2: Pre-contact data. Next, we introduce the element α ∈ (Ω1

A)
k given by

α = ddRz
k +

ℓ∑
i=0

mi∑
j=1

yk+i
j ddRx

−i
j . (12)

Let us first show that dα = 0. To this end, we compute ddRα =
∑ℓ

i=0

∑mi
j=1 ddRx

−i
j ddRy

k+i
j .

Then the element ddRα is (d+ ddR)-closed by [3, Example 5.8]. The same example also implies
that if we let9

ϕ :=

ℓ∑
i=0

mi∑
j=1

[
(−i)x−i

j ddRy
k+i
j + (k + i)yk+i

j ddRx
−i
j

]
9Alternatives like k

∑
i,j y

k+i
j ddRx

−i
j can be obtained by replacing H,ϕ by suitable H + d[· · · ] and ϕ+ ddR[· · · ].
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and H as above, then the pair (ϕ,H) ∈ (Ω1
A)

k ×Ak+1 is a solution to the equations

dH = 0 in Ak+2, ddRH + dϕ = 0 in (Ω1
A)

k+1, and ddRϕ = kddRα. (13)

Observe that ϕ+ ddR
[∑

i,j(−1)iix
−i
j yk+i

j

]
= k

∑
i,j y

k+i
j ddRx

−i
j , then we can write

kα = kddRz
k + k

ℓ∑
i=0

mi∑
j=1

yk+i
j ddRx

−i
j = kddRz

k + ϕ+ ddR

[∑
i,j

(−1)iix−i
j yk+i

j

]
. (14)

As we set −kdzk = H + d[· · · ] in (11), we obtain d(kα) = ddR ◦ d(−kzk) + dϕ + d ◦ ddR[· · · ] =
ddR(H + d[· · · ])− ddRH − ddR ◦ d[· · · ] = 0 using (13). In that case, α is then d-closed, and hence
a 1-form of degree k. In other words, the pair (H, kα− kddRz

k − ddR[· · · ]), with H,α as above,
provides a solution to the equations (13), which implies dα = 0.

Next, we show that there is a canonical pre-k-shifted contact structure on SpecA induced by
kerα. For i = 0, . . . , ℓ, and 1 ≤ j ≤ mi, denote the vector fields annihilating α by

ζij = ∂/∂x−i
j − yk+i

j ∂/∂zk in degree i,

η−k−i
j = ∂/∂yk+i

j in degree − k − i. (15)

We thus obtain kerα = SpanA{ζij , η−k−i
j } ↪→ TA over SpecA, with the Tor-amplitude [0,−k].

From Prop. 2.9, the restrictions of TA, kerα to SpecH0(A) are both complexes of free H0(A)-
modules. Likewise, the restriction of TA⧸kerα to SpecH0(A) is then generated by the deg−k
vector field ∂/∂zk as an H0(A)-module, and hence it is equivalent to the complex concentrated
in degree −k. It follows that the quotient can also be identified with a k-shifted line bundle L[k]

on SpecA such that we get a fiber-cofiber sequence

kerα→ TA → L[k],

and hence a map TA → L[k]. Therefore, the data of L[k] and the map TA → L[k] together with
the k-shifted 1-form α above define a pre-k-shifted contact structure on SpecA in the sense
of Definition 2.16. Call such α a pre-k-contact form .

Step-3: From pre-contact to contact. So far, we have obtained a pre-k-contact form
α ∈ (Ω1

A)
k as in (12) using the variables in (7), the differential d defined by (11), and the

equations in (13). It remains to show that ddRα is non-degenerate on kerα. To this end, it
suffices to prove the non-degeneracy of the induced map

ddRα|kerα ⊗A idH0(A) : kerα⊗A H0(A)→ (kerα)∨[k]⊗A H0(A).

We first observe that, at p ∈ SpecH0(A), ddRα|p maps

⟨∂/∂x−i
1 |p, . . . , ∂/∂x

−i
mi
|p⟩K

∼−→ ⟨ddRyk+i
1 |p, . . . , ddRyk+i

mi
|p⟩K,

⟨∂/∂yk+i
1 |p, . . . , ∂/∂yk+i

mi
|p⟩K

∼−→ ⟨ddRx−i
1 |p, . . . , ddRx

−i
mi
|p⟩K

isomorphically for all i, such that ddRα(∂/∂z
k|p,−) = 0. It follows that, at p ∈ SpecH0(A), we

have the identifications(
TA⧸ker ddRα

)
|p ≃ ⟨∂/∂x−i

j |p, ∂/∂y
k+i
j |p : ∀i, j⟩K ≃ (kerα)|p. (16)

Thus, the maps (ddRα|kerα)i|p : (kerα|p)i → (ker∨ α|p)k+i are all isomorphisms at p, hence
isomorphisms in a neighborhood of p. So, localizing A at p if necessary, the induced morphism
ddRα|kerα ⊗A idH0(A) is an isomorphism of complexes, and hence a quasi-isomorphism. Thus,
ddRα|kerα is non-degenerate, and we get a k-shifted contact structure on SpecA with a k-
contact form α in the sense of Definition 2.17 as desired.
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Definition 2.22. If A, d, α are as above, we then say A,α are in contact Darboux form .

Note that the general expressions like “ddRz
k + ϕ/k + ddR[· · · ]/k” will still be valid for the

other cases (a) k ≡ 0 mod 4, and (b) k ≡ 2 mod 4 as well. In fact, Equations (76) − (79)
in Appendix A show that the other cases involve modified versions of H, d, and ϕ with some
possible extra terms. In either case, the modified A,α would also serve as the desired contact
model. Following the same terminology as above, we also say A,α are in (contact) Darboux
form for any k.

Observation 2.23. Sanity check: the cases k = −1 (ℓ = 0) and k = −3 (ℓ = 1).

• When k = −1, we set A = A(0)[z−1, y−1
1 , . . . , y−1

m0
], with A(0) a K-algebra generated by

x01, . . . , x
0
m0

, such that vdim A = m0− (m0+1) = −1. Choosing an arbitrary Hamiltonian
H ∈ A(0), we let dz−1 = H and dy−1

j = ∂H/∂x0j and dx0j = 0 ∀j. Then, from (12), the
element

α = ddRz
−1 +

∑
1≤j≤m0

y−1
j ddRx

0
j

defines a (−1)-contact form. In that case, kerα is generated by the vector fields ∂/∂y−1
j

and y−1
j ∂/∂z−1 − ∂/∂x0j for 1 ≤ j ≤ m0.

• When k = −3, we let A = A(0)[x−1
1 , . . . , x−1

m1
, y−2

1 , . . . , y−2
m1

, z−3, y−3
1 , . . . , y−3

m0
], with A(0)

a K-algebra generated by x01, . . . , x
0
m0

, such that vdim A = −1.
Observe that from [3, Example 5.17], a Hamiltonian H ∈ A−2 is an element of the form
H =

∑m1
j=1 y

−2
j sj+

∑m1
i,j=1 x

−1
i x−1

j tij , with sj , tij ∈ A(0), satisfying
∑m1

i,j=1 tijsj = 0 in A(0)

for i = 1, . . . ,m1.

From (11), the differential d is defined by dx0j = 0, dx−1
j = sj , dy−2

j = 2
∑m1

j′=1 x
−1
j′ tjj′ ,

dy−3
j =

∑m1
j′=1 y

−2
j′

∂sj′

∂x0
j
+
∑

j′′,j′ x
−1
j′′ x

−1
j′

∂tj′′j′

∂x0
j

, and dz−3 = H
3 −

1
3

∑
j sjy

−1
j +2

3

∑
j,j′ x

−1
j x−1

j′ tjj′ .
Then the element

α = ddRz
−3 +

m0∑
j=1

y−3
j ddRx

0
j +

m1∑
j=1

y−2
j ddRx

−1
j

is a (−3)-contact form. Here, kerα is generated by the vector fields y−3
j ∂/∂z−3 − ∂/∂x0j

and ∂/∂y−3
j for 1 ≤ j ≤ m0; and by ∂/∂x−1

j −y−2
j ∂/∂z−3 and ∂/∂y−2

j for all 1 ≤ j ≤ m1.

Example 2.24. Let k,A,H, ϕ be as in Example 2.21. Alternatively, we can define the differential
d on A as in (11), but with −kdzk = H, instead. In that case, we then introduce the element
α′ ∈ Ω1

A[k] by

α′ = ddRz
k +

∑
i,j

[
− i

k
x−i
j ddRy

k+i
j +

k + i

k
yk+i
j ddRx

−i
j

]
= ddRz

k + ϕ/k.

Note that dα′ = 0 as well due to the new choice of dzk. Modifying Example 2.21 accordingly,
one can also conclude that such element α′ also serves as a k-contact form, inducing a k-contact
structure on SpecA, with the contact data constructed similarly. Details are left to the reader.
Using the same terminology, we also say A,α′ are in (contact) Darboux form .

Notice that both versions α and α′ (and the corresponding differentials) in Example 2.21
and Example 2.24 coincide for k = −1. These examples also suggest that suitable modifications
using H + d[· · · ] and ϕ+ ddR[· · · ] may lead to alternative versions of such forms.
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2.3.2 Main results for negatively shifted contact derived schemes We now outline the main
results of [2] for derived K-schemes (of locally finite presentations) with negatively shifted contact
structures.

A Darboux-type theorem. The first result is about Darboux-type local models, which es-
sentially says that for k < 0, every k-shifted contact derived K-scheme X is locally equivalent to
(SpecA,α0) for A a minimal standard form cdga and α0 as in Example 2.21. More precisely, we
have:

Theorem 2.25. [2, Thm. 3.13.] Let X be a k-shifted contact derived K-scheme for k < 0, and
x ∈ X. Then there is a local contact model

(
A,α0

)
and p ∈ SpecH0(A) such that i : SpecA ↪→ X

is an open inclusion with i(p) = x, A is a standard form that is minimal at p, and α0 is a
k-shifted contact form on SpecA such that A,α0 are in Darboux form.

Note that for k < 0 odd, for instance, the pair (A,α0) can be explicitly given by the graded
variables as in Examples 2.21 and 2.24. For the other cases, one should use another sets of
variables as in Equations (76) and (77), and modify H,ϕ, d accordingly.

Symplectification. The second main result of [2] is about the symplectification of a k-shifted
contact derived K-scheme. Recall from [2, Def. 4.3] that if X is a locally finitely presented
derived K-scheme carrying a k-shifted contact structure (K, κ, L) with k < 0, then we define
its symplectification SX to be the total space L̃ of the Gm-bundle of L over X, provided with
a canonical k-shifted symplectic structure (for which the Gm-action is of weight 1) as defined
below.

Let (X;K, κ, L) be a k-shifted contact derived K-scheme of locally finite presentation. Given
k < 0 and p ∈ X, find an affine derived sub-scheme U := SpecA such that p : SpecA → X is
Zariski open inclusion (we may further assume A is of minimal standard form). Here, we assume
w.l.o.g. that L is trivial on U. Define the functor SX : cdgaK → Spcs by A 7→ SX(A), where

SX(A) :=
{
(p, α, v) : p ∈ X(A), α : p∗(TX)→ O[k], v : Cocone(α)

∼−→ p∗(K)
}
, (17)

where each v is a quasi-isomorphism respecting the natural morphisms p∗κ : p∗K → p∗(TX)

and Cocone(α)→ p∗(TX). Under the current assumptions, the perfect complexes TA,LA, when
restricted to SpecH0(A), are both quasi-isomorphic to free complexes of H0(A)-modules. For
A ∈ cdgaK, we then define a Gm(A)-action on SX(A) by

f ◁ (p, α, v) := (p, f · α, v).

By [2, Prop. 4.4], SX is equivalent to the total space L̃ of the Gm-bundle of L. Therefore, it
has the structure of a derived stack together with the projection map π1 : SX → X.

We also introduce the canonical 1-from λ on SX. By construction, we have the projection
maps π1 : SX → X and π2 : SX → T∗[k]X. We define the canonical 1-from λ on SX to be the
pullback π∗

2λX of the tautological 1-form λX on T∗[k]X. We then have:

Theorem 2.26. [2, Thm. 4.7] Let X be a (locally finitely presented) derived K-scheme car-
rying a k-shifted contact structure (K, κ, L) with k < 0. Then the k-shifted closed 2-form
ω := (ddRλ, 0, 0, . . . ) is non-degenerate, and hence the derived stack SX is k-shifted symplec-
tic.

We then call the pair (SX, ω) the symplectification of X.
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3. Results for shifted geometric structures on derived Artin stacks

In this section, we will explain how to extend the main results of [2], outlined in the previous
section (cf. Theorems 2.25 and 2.26), from derived schemes to the more general case of derived
Artin stacks. We begin with some basic definitions and results from [1]. Later, we give two
theorems about the desired generalizations (cf. Theorems 3.7 & 3.9).

3.1 A Darboux-type theorem for shifted symplectic derived Artin stacks

Nice atlases for derived Artin stacks. Recall that derived schemes has nice local models.
With the same spirit, derived Artin K-stacks have nice atlases. In that respect, we have the
following generalization of Definition 2.3:

Definition 3.1. Let X be a derived Artin K-stack and x ∈ X. By a standard form open
neighborhood of x, we mean a pair (A,φ) and a point p ∈ SpecH0(A) such that A is a standard
form cdga in the sense of Definition 2.3, and φ : U = SpecA → X is smooth of some relative
dimension n ≥ 0 with φ(p) = x.

For A, φ : U = SpecA → X, and a point p ∈ specH0(A) as above, there exists a canonical
distinguished triangle

φ∗LX → LU → LU/X → φ∗LX [1]. (18)

As φ is smooth of some relative dimension n ≥ 0, LU/X is locally free of rank n. Moreover, for
φ(p) = x, an element of the pullback φ∗LX is locally of the form (f ⊗ β)|p with β ∈ LX |x and
f ∈ A, such that the map φ∗LX|p → LU|p sends f ⊗ β 7→ f · β.

Observation 3.2. It follows from the sequence (18) that H i(LX|x) ≃ H i(LU|p) for i < 0.

Moreover, as U is not “stacky", it follows that H1(LU|p) = 0. Hence, there exists an exact
sequence of K-vector spaces

0→ H0(LX|x)→ H0(LU|p)→ H0(LU/X|p)→ H1(LX|x)→ 0, (19)

so that n ≥ dimH1(LX|x) due to the exactness.

Definition 3.3. We say that a standard form open neighborhood (A,φ, p) of x is minimal if
A is minimal in the sense of Definition 2.4, and the relative dimension n attains its minimum;
i.e., n = dimH1(LX|x).

Observation 3.4. Given a minimal standard form open neighborhood (A,φ, p) of x, the se-
quence (19) implies that there are isomorphisms H0(LU/X|p) ≃ H1(LX|x) and H0(LX|x) ≃
H0(LU|p). Therefore, we have

H i(LX|x) ≃ H i(LU|p) for i ≤ 0. (20)

It follows that A(0) is smooth of dimension m0 = dimH0(LX|x), and A is free over A(0) with
mi = dimH−i(LX|x) generators in each degree −i.

Ben-Bassat, Brav, Bussi and Joyce [1] proved that derived Artin K-stacks have nice local
models in terms of minimal standard form open neighborhoods. The following result summarizes
key observations from [1, Theorems 2.8 & 2.9] and in fact serves as a generalization of Theorem
2.8. For more details, we refer to [1, Sections 2.4 & 2.5].
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Theorem 3.5. Let X be a derived Artin K-stack and x ∈ X. Then there exists a minimal
standard form open neighborhood (A,φ, p) of x. Moreover, if (A,φ, p) and (A′, φ′, p′) are two
such open neighborhoods, then there exists another standard form cdga A′′ which can be used to
compare them in a reasonable way.

Darboux form atlases for negatively shifted symplectic derived Artin stacks. For
k < 0, it has been proven in [1] that given a k-shifted symplectic derived Artin K-stack (X, ω),
near each x ∈ X, one can find a “minimal smooth atlas" φ : U → X with U = SpecA an affine
derived scheme such that (U, φ∗(ω)) is in a standard Darboux form. More precisely, we have:

Theorem 3.6. ([1, Theorem 2.10]) Let (X, ω) be a k-shifted symplectic derived Artin K-stack
for k < 0, and x ∈ X. Then there exist a minimal standard form open neighborhood (A,φ, p) of
x, with φ(p) = x, a minimal standard form cdga B with inclusion ι : B ↪→ A and the diagram

SpecB = V
j:=Spec(ι)←−−−−−− U = SpecA

φ−→ X (21)

such that the induced morphism τ(U)
τ(j)−−→ τ(V) between truncations is an isomorphism, and

there is a k-shifted symplectic structure ωB = (ω0
B, 0, 0, . . . ) on V = SpecB, which is in Darboux

form in the sense of Theorem 2.13, with φ∗(ω) ∼ j∗(ωB) in k-shifted closed 2-forms on U.

Moreover, there exists a natural equivalence

LU/V ≃ TU/V[1− k]. (22)

3.2 A Darboux-type theorem for shifted contact derived Artin stacks In this section,
we will discuss how to extend Theorem 2.25 from derived schemes to derived Artin stacks. In
that respect, the following result provides a Darboux-type atlas for negatively shifted contact
derived Artin stacks. The proof will be a variation of [1, Theorem 2.10].

Theorem 3.7. Given k ∈ Z<0, let X be a derived Artin K-stack (locally of finite presentation)
carrying a k-shifted contact structure, and x ∈ X. Then we can find

• a minimal standard form open neighborhood (A,φ : U→ X, p) of x;
• a dg-subalgebra B of A with inclusion ι : B ↪→ A and the diagram

V := SpecB
j:=Spec(ι)←−−−−−− U = SpecA

φ−→ X; and

• a k-contact form αB on V such that for any k-contact form α on X, we have an equivalence
φ∗(α) ∼ j∗(αB) in A1(U, k), and the pair (B,αB) is in contact Darboux form (cf. Example
2.21 for k odd).

Moreover, the induced morphism τ(j) : τ(U)→ τ(V) between truncations is an isomorphism.

Proof. Let (K κ−→ TX, L) be a k-shifted contact data on X. Then, locally on X, where L is
trivialized, the perfect complex K can be given as a cocone of α, where α : TX → OX[k] is a
k-contact form, such that we have the (co)exact triangle K → TX → L[k].

Given k < 0 and x ∈ X, apply now Theorem 3.5 to get a minimal standard form open
neighborhood (A,φ : U → X, p) of x, with U = SpecA, x ∈ X(A), p ∈ SpecH0(A) such that
p 7→ x and that the map φ is smooth of relative dimension n = dimH1(LX|x). We also assume
that A is a standard form cdga constructed inductively as described in (2) such that LA has
Tor-amplitude in [k − 1, 0].
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When the shift is odd. As before, we focus on a particular and the simplest case: k is odd,
say k = −2ℓ− 1 for ℓ ∈ N. By Definition 3.1, A can be chosen as a free algebra over A(0) with
mi generators in degree −i for i = 1, . . . , ℓ, and mi generators in degree k + i for i = 0, . . . , ℓ,
but with additional n generators in degree k − 1. See Example B.1.

W.l.o.g., we can assume10 that L is trivial on the interior of the image φ(U), denoted by
Ũ. Then, over Ũ, the induced 1-form α : TX → OX[k] is such that K is the cocone of α, up
to quasi-isomorphism, and the 2-form ddRα is non-degenerate on K. In that case, we have the
exact triangle K → TX → L[k] over Ũ. We fix this k-contact form α for the rest of the proof.
Also, by abuse of notation, we simply use α for its pullback on K as well.

Next, we consider ddRφ
∗(α) as a sequence (ddRφ

∗(α), 0, 0, . . . ), which defines a closed k-
shifted 2-form on U = SpecA. Applying Proposition 2.14 to ddRφ

∗(α), we obtain elements
H ∈ Ak+1 and ϕ ∈ (Ω1

A)
k such that dH = 0, ddRH+dϕ = 0 , and kddRφ

∗(α) ∼ (ddRϕ, 0, 0, . . . ).

We denote this representative by (ω0, 0, 0, . . . ) or just ω0 whenever the meaning is clear.
Note that the pullback φ∗(α) may not be a k-shifted contact form on U, because ddRφ

∗(α)

is not necessarily non-degenerate on φ∗(K). But, we may ensure the non-degeneracy for some
degrees. In this regard, we have the following lemma.

Lemma 3.8. Let ω0 ∼ ddRφ
∗(α) be the representative of ddRφ∗(α) as above. Then the induced

morphism ω0|φ∗(K)· : φ∗(K) → φ∗(K∨[k]) is a quasi-isomorphism only for 0 ≤ i ≤ −k (i.e.
except in deg k − 1).

Proof of Lemma 3.8. We first note that, from Observation 3.4, H i(LX|x) ≃ H i(LU|p) for i ≤ 0,

where LU ≃ LA ≃ Ω1
A with A a (minimal) standard form cdga. Then the natural morphism

Lφ[k] : φ
∗(LX)[k]→ LA[k] from the triangle (18) induces an isomorphism on cohomology H i at

p for i + k ≤ 0, and it is zero if i + k = 1. Likewise, the dual L∨
φ induces an isomorphism on

cohomology H i at p for i ≥ 0, and it is zero if i = −1. Thus, we get the diagram11

TA φ∗(TX) φ∗(LX[k]) Ω1
A[k]

φ∗(K[−1]) φ∗(K) φ∗(K∨[k]) φ∗(K∨[k]).

L∨
φ φ∗(ddRα ·)

φ∗κ∨[k]

Lφ[k]

γ∨[k]

≃ ω0|φ∗(K) ·
φ∗κ

γ (23)

Combining the conditions for i above, we observe that for 0 ≤ i ≤ −k only, Diagram 23 describes
a suitable factorization of the map ω0· : TA → Ω1

A[k] commuting

TA ≃ φ∗(TX) Ω1
A[k] ≃ φ∗(LX[k])

φ∗(K) φ∗(K∨[k]),

ω0·

ω0|φ∗(K)·

(24)

where the 2nd row is the pullback of K → K∨[k], which is an equivalence as ddRα is non-
degenerate on K. Thus, we conclude that the map ω0· : TA → Ω1

A[k] representing ddRφ
∗(α)· is

non-degenerate on φ∗(K) only for 0 ≤ i ≤ −k.

10Otherwise, apply again Theorem 3.5 to the overlap φ(U)×h
XW , where W is open containing x s.t. L|W is trivial,

to get another minimal standard form open neighborhood (A′, φ′ : U′ → X, p′). Then we consider the interior of
φ′(U′) over which the restriction of L is still trivial. Here φ(U) denotes the image Imφ, with the monomorphism
Imφ ↪→ X.
11The diagonal map γ is the composition defined by the commuting triangle.
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Variables in degrees 0,−1, . . . , k. Now, we start with the pullback under φ of the triangle
K → TX → L[k] above, which locally splits over U. That is, cofib(φ∗(K)→ φ∗(TX)) ≃ φ∗(L[k]),
which is concentrated in deg−k, and φ∗(TX) = φ∗(K) ⊕ φ∗(L[k]). Here, we will call the 2nd
summand Rest. Localizing A at p if necessary, first choose degree 0 variables x01, x

0
2, . . . , x

0
m0

in
A(0) such that {ddRx0j : j = 1, . . . ,m0} forms a basis for φ∗(K∨)0 over A(0), and (Rest∨)0 is
zero.

Since the induced morphism ddRφ
∗(α)· is an equivalence on φ∗(K) only for k ≤ −i ≤ 0 due

to Lemma 3.8, we can make the following choices of variables in degrees 0,−1, . . . , k:
• When i = 0, we find generators yk1 , y

k
2 , . . . , y

k
m0

, zk ∈ Ak such that {ddRyk1 , . . . , ddRykm0
} is

a basis for φ∗(K∨)k which is dual to the basis {ddRx01, . . . , ddRx0m0
} for φ∗(K∨)0, and that

the complex Rest is generated by the vector field ∂/∂zk of degree −k.
• For 1 ≤ i ≤ ℓ, again by Lemma 3.8, we can choose generators x−i

1 , x−i
2 , . . . , x−i

mi
∈ A−i and

yk+i
1 , yk+i

2 , . . . , yk+i
mi
∈ Ak+i (except in deg k − 1) such that ddRy

k+i
j , for j = 1, . . . ,mi,

form a basis for φ∗(K∨)k+i which is dual to the basis {ddRx−i
1 , . . . , ddRx

−i
mi
} for φ∗(K∨)−i.

Then the map ω0|φ∗(K) · ⊗ idH0(A) gives an equivalence12 of H0(A)-modules in each degree:

⟨∂/∂x−i
1 , . . . , ∂/∂x−i

mi
⟩ ∼−→ ⟨ddRyk+i

1 , . . . , ddRy
k+i
mi
⟩ for 0 ≤ i ≤ ℓ, (25)

⟨∂/∂yk+i
1 , . . . , ∂/∂yk+i

mi
⟩ ∼−→ ⟨ddRx−i

1 , . . . , ddRx
−i
mi
⟩ for 0 ≤ i ≤ ℓ. (26)

Note that we have φ∗(K) = φ∗(Cocone(α)) ≃ Cocone(φ∗(α)) using the equivalence between
two exact sequences Cocone(φ∗α) → φ∗TX

φ∗α−−→ O[k] and φ∗Cocone(α) → φ∗TX
φ∗α−−→ O[k],

where the latter is the pullback of Cocone(α)→ TX
α−→ OX[k]. Moreover, over SpecA, we simply

write kerφ∗(α) instead of Cocone(φ∗α)13.
Thus, using the local coordinates, the splitting TA = kerφ∗(α)⊕Rest is such that kerφ∗(α)

has Tor-amplitude [0,−k] and Rest is concentrated in deg−k, where

kerφ∗(α)|SpecH0(A) =
〈
∂/∂x−i

j , ∂/∂yk+i
j : 0 ≤ i ≤ ℓ, 1 ≤ j ≤ mi

〉
H0(A)

,

Rest|SpecH0(A) =
〈
∂/∂zk

〉
H0(A)

. (27)

Then using the complexes in (27), the non-degeneracy condition for ddRφ
∗(α) on kerφ∗(α) -

except for deg (k − 1) - sending the dual basis of ddRxba to the basis ddRy
b′
a′ (and vice versa) as

in Equations (25) - (26) implies that ddRφ
∗(α) ∈ ∧2Ω1

A[k] is given by

ddRφ
∗(α) =

ℓ∑
i=0

mi∑
j=1

ddRx
−i
j ddRy

k+i
j . (28)

Note that the kernel of the induced map ddRφ
∗(α)· is spanned by the degree −k vector field

∂/∂zk, while the action of ddRφ
∗(α)· on kerφ∗(α) is given by Equations (25)-(26). Thus, we

obtain the identification TA⧸ker ddRφ∗(α) ≃ kerφ∗(α).

Scaling zk we may assume ι∂/∂zkφ
∗(α) = 1. Now, our goal is to find a unique14 φ∗(α)

satisfying Eqn. (28), the condition on the kernel in (27), and the equation ι∂/∂zkφ
∗(α) = 1.

12Due to the minimality at p, d−i|p = 0 = (d−i)∨|p for each i. So, all degree-wise maps are isomorphisms at p,
and hence in a neighborhood of p. So, localizing A at p if necessary, we can assume ω0|φ∗(K) · ⊗ idH0(A) is an
isomorphism.
13Thanks to Proposition 2.20.
14The conditions uniquely determine the explicit form, up to interchange of x−i

j and yk+i
j . Here, the roles of

x−i
j , yk+i

j are symmetric in (28) and (27), where ddRx
−i
j ddRy

k+i
j = ddRy

k+i
j ddRx

−i
j for k odd. See [2, Proof of

Thm. 3.13].



Contact Derived Stacks 119

Then such φ∗(α) satisfying the desired properties can be written explicitly as

φ∗(α) = ddRz
k +

∑
i,j

yk+i
j ddRx

−i
j . (29)

Variables in degree (k − 1) and the differential. We construct the rest by combining
Example 2.21 with Example B.1. Note that Example 2.21 does not involve the additional finitely
many generators in degree (k − 1). However, due to the atlas chosen at the beginning of the
proof, the corresponding cdga A must admit additional n generators in degree (k − 1) as in
Example B.1.

In our case, we identify A as a commutative graded algebra with the commutative graded
algebra freely generated by the variables zk, x−i

j , yk+i′

j′ as above, but with additional n gen-
erators, wk−1

1 , . . . , wk−1
n , in degree k − 1. As discussed before, ω0, H, ϕ above do not involve

any of wk−1
j for degree reasons, and hence the extra variables can be chosen arbitrarily.

Choose B with inclusion ι : B ↪→ A such that B(0) is the subalgebra of A(0) with the same
generators x01, . . . , x

0
m0

and that the sub-cdga B is the free algebra over B(0) on the generators
x−i
j , yk+i

j , zk only . That is, we identify B as a commutative graded algebra with the commutative
graded algebra in Example 2.21.

It remains to show that H satisfies (10) and the differential d on B can be given by Equation
(11). To this end, we analyze the defining equations for the pair (H,ϕ). Notice that d will not
be fully determined on A, but determined only on B, which is enough for our construction. So,
dwk−1

j can be arbitrary.
First of all, combining the defining equation ddRϕ = kddRφ

∗(α) above with the equation (28),
we may explicitly write15

ϕ =

ℓ∑
i=0

mi∑
j=1

[(−i)x−i
j ddRy

k+i
j + (k + i)yk+i

j ddRx
−i
j ].

Then (the proof of ) [3, Theorem 5.18] shows that expanding ddRH + dϕ = 0 with the explicit
representation of ϕ above and comparing the coefficients of ddR-terms, one can get the following
formulas for d:

d|B(0) = 0; dx−i
j =

∂H

∂yk+i
j

for all i > 0, j; and dyk+i
j =

∂H

∂x−i
j

for all i, j. (30)

Secondly, using these equations16 to expand dH = 0, [3, Theorem 5.18] also shows that H

satisfies the classical master equation (10). Before the final step, we also observe that using the
explicit representation of ϕ above, φ∗(α) in (29) can also be rewritten as

φ∗(α) = ddRz
k +

1

k

[
ϕ+ ddR

[∑
i,j

(−1)iix−i
j yk+i

j

]]
. (31)

Finally, combining the defining equation ddRH + dϕ = 0 with Eqn. (31) (and dφ∗(α) = 0),
we get ddRH = −dϕ = −kdφ∗(α)+ kd ◦ ddRzk + d ◦ ddR[· · · ] = ddR(−kdzk − d[· · · ]). So, we have

15See the proof of [3, Theorem 5.18]. Alternatively, one can let ϕ = k
∑ℓ

i=0

∑mi
j=1 y

k+i
j ddRx

−i
j . Leaving ddRϕ

unchanged, these expressions can be transformed to each other by replacing H,ϕ by suitable H + d(· · · ), ϕ +

ddR(· · · ), respectively. See Examples 2.21 and 2.24.
16These equations will be enough as H is independent of the variables zk, yk

j ’s.
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such H satisfying −kdzk = H+d[· · · ]. Thus, we conclude that the differential d is given by Eqn.
(11); hence, (B, d) is identified with the cdga in Example 2.21.

Contact data on SpecB and SpecA. We let V := SpecB, along with the diagram

SpecB = V
j:=Spec(ι)←−−−−−− U = SpecA

φ−→ X. (32)

For degree reasons, H ∈ B, and ω0, ϕ are all images under ι of ω0
B, ϕB, respectively, where

ω0
B =

ℓ∑
i=0

mi∑
j=1

ddRx
−i
j ddRy

k+i
j and ϕB =

ℓ∑
i=0

mi∑
j=1

[(−i)x−i
j ddRy

k+i
j + (k + i)yk+i

j ddRx
−i
j ]. (33)

Note that from Example 2.21, SpecB carries the canonical k-shifted contact structure defined
by αB = ddRz

k +
∑

i,j y
k+i
j ddRx

−i
j . Therefore, from Eqn. (29), we conclude that

φ∗(α) ∼ j∗(αB) except in degree (k − 1).

Lastly, we can consider j : U → V as an embedding of U into V as a derived subscheme;
and hence, the induced morphism τ(j) : τ(U) → τ(V) between truncations is an isomorphism.
This completes the proof for odd k.

When the shift is not odd. For the other cases (a) k ≡ 0 mod 4, and (b) k ≡ 2 mod 4,
one should use another sets of variables as in Equations (76) and (77), respectively, along with
the additional generators wk−1

j in degree k − 1. We leave details to the reader.

3.3 Symplectifications of shifted contact derived Artin stacks In this section, we de-
scribe the canonical symplectification of a (negatively) shifted contact derived Artin K-stack.
More precisely, we have:

Theorem 3.9. Let X be a k-shifted contact derived Artin K-stack, then its symplectization
(SX, ω) can be canonically described as in Theorem 2.26.

Proof. First of all, using Theorem 2.26, we define the space SX as follows. Let (X;K, κ, L) be a
k-shifted contact derived Artin K-stack of locally finite presentation. Then we define the functor
SX : cdgaK → S by A 7→ SX(A), where

SX(A) :=
{
(x, α, v) : x ∈ X(A), α : φ∗(TX)→ O[k], v : Cocone(α)

∼−→ φ∗(K)
}
, (34)

where each v is a quasi-isomorphism respecting the natural morphisms φ∗κ : φ∗K → φ∗(TX)

and Cocone(α)→ φ∗(TX).
By [2, Prop. 4.4], SX is equivalent to the total space L̃ of the Gm-bundle of L. Therefore,

it has the structure of a derived stack together with the projection maps π1 : SX → X and
π2 : SX → T∗[k]X. We also define the canonical 1-from λ on SX to be the pullback π∗

2λX of the
tautological 1-form λX on T∗[k]X.

We set ω := (ddRλ, 0, 0, . . . ), which is a k-shifted closed 2-form on SX, and hence it defines a
pre-k-shifted symplectic structure on SX. Now, it remains to show that ω is non-degenerate. As
before, the rest of the argument is in fact local, so it is enough to prove it using suitable local
models studied in the previous sections.
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Let us now analyze our local data. Given k < 0 and x ∈ X, find an affine derived scheme
U := SpecA and p ∈ SpecH0(A) with φ : SpecA → X a smooth map of relative dimension
n such that p 7→ x (we may further assume A is of minimal standard form due to Theorem
3.5). Here, we assume w.l.o.g. that L is trivial on the interior, Ũ, of Imφ as before. Under
the current assumptions, the perfect complexes TA,LA, when restricted to SpecH0(A), are both
quasi-isomorphic to free complexes of H0(A)-modules. For A ∈ cdgaK, we then define a Gm(A)-
action on SX(A) as before.

By Theorem 3.7, we can construct a cdga B with inclusion ι : B ↪→ A and the diagram

SpecB = V
j:=Spec(ι)←−−−−−− U = SpecA

φ−→ X

such that the induced morphism τ(j) : τ(U) → τ(V) between truncations is an isomorphism.
In fact, we get the pair (V, αB) with an equivalence φ∗(α) ∼ j∗(αB) except in degree k− 1 such
that αB is a k-shifted contact form on V as in Example 2.21.

Fixing the local data above, we then consider the homotopy pullback diagram

Z := U×h
X SX SX T∗[k]X.

U X

pr2 π2

φ

pr1 π1

(35)

Notice that, over p ∈ U, we can then identify the fiber over p locally as U×h
X Gm, with natural

projections, because SX is identified the total space of L.
On the part of the space SX over Ũ, for the elements π∗

1α, λ ∈ LSX
[k], the identification of

SX with the total space of L (i.e. the space of trivializations) implies that there is an element
f ∈ Gm(A) such that

λ = f · π∗
1(α). (36)

Using the homotopy φ ◦ pr1 ∼ π1 ◦ pr2, we get an element λ̃ ∈ pr∗2(LSX
[k]) such that

λ̃ := pr∗2(λ) = pr∗2(f) · (π1 ◦ pr2)∗(α) ∼ pr∗2(f) · (φ ◦ pr1)∗(α) = pr∗2(f) · pr∗1(φ∗α), (37)

where we denote pr∗2(f), pr
∗
1(φ

∗α) simply by f̃ , φ̃∗α, respectively. Thus, we get a local represen-
tative of λ,

λ̃ = f̃ · φ̃∗α,

on a (minimal) standard form open neighborhood (A,φ, p) of x.
Moreover, for the map φ ◦ pr1 : Z → X we have an exact triangle

(φ ◦ pr1)∗(LX[k])→ pr∗1(LU[k])⊕ pr∗2(LSX
[k])→ LZ [k]. (38)

Now, to prove ω := (ddRλ, 0, 0, . . . ) is non-degenerate, it suffices to show that ddRλ̃ is non-
degenerate.

Lemma 3.10. ddRλ̃ is non-degenerate.

Proof. Recall first that there exists a natural equivalence DR(A) ⊗K DR(C) ≃ DR(A ⊗K C)

induced by the identification

LA⊗KC ≃ (LA ⊗K C)⊕ (A⊗K LC). (39)
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In our case, since the fiber over p is locally given as U×h
XGm, where U = SpecA and Gm = SpecC

is the affine group scheme, with say C := K[x, x−1], we can use the identification (39) to locally
decompose λ̃ = f̃ · φ̃∗α.

We then have, when restricted to SpecH0(A),

(LA⊗KC)
∨ ≃

(
ker(φ∗α)17 ⊕Rest

)
⊕
(
H0(A)⊗K ⟨∂/∂f̃⟩C

)
. (40)

Now, to prove that ddRλ̃ is non-degenerate, it suffices to show that, at p ∈ U, for any non-
vanishing (homogeneous) vector field σ ∈ (LA⊗KC)

∨, there is a vector field η ∈ (LA⊗KC)
∨ such

that ιη(ισddRλ̃) ̸= 0.18 To this end, we first compute

ιη(ισddRλ̃) = ∓(ddRf̃)(σ)φ∗α(pr1,∗η)∓ (ddRf̃)(η)φ
∗α(pr1,∗σ)∓ f̃ · ddR(φ∗α)(pr1,∗σ, pr1,∗η).

From Equation (40), it is enough to consider the following cases:
1. If σ ∈ ker(φ∗α), then ιη(ισddRλ̃) = ∓f̃ddR(φ∗α)(pr1,∗σ, pr1,∗η). Since ddR(φ

∗α)|ker(φ∗α)

is non-degenerate by the contactness condition on φ∗(α) ∼ j∗(αB) except in degree k − 1

(and f̃ ̸= 0 as f ∈ Gm(A)), it is enough to take η to be any non-zero vector in ker(φ∗α).
2. If σ ∈ Rest, then we get ιη(ισddRλ̃) = ∓(ddRf̃)(η)φ∗α(σ). Observe that φ∗α(σ) ̸= 0 since

σ ∈ Rest. Thus, it is enough to take η to be any non-zero vector in H0(A)⊗K ⟨∂/∂f̃⟩C so
that (ddRf̃)(η) ̸= 0.

3. If σ ∈ H0(A) ⊗K ⟨∂/∂f̃⟩C , then ιη(ισddRλ̃) = ∓(ddRf̃)(σ)φ∗α(pr1,∗η). Note that we
have (ddRf̃)(σ) ̸= 0, so it suffices to take η to be any non-zero vector in Rest so that
φ∗α(pr1,∗η) ̸= 0.

In total, from Lemma 3.10, the k-shifted 2-form ω0 := ddRλ is non-degenerate (except in
degree k− 1), and hence the sequence ω := (ω0, 0, 0, . . . ) defines a k-shifted symplectic structure
on SX. This completes the proof of Theorem 3.9.

4. Examples

In this section we present several constructions of derived Artin stacks with shifted contact
structure. In brief, the first example in Section 4.1 generalizes the 1-jet bundles in the classical
setup; and the second set of constructions in Section 4.2 arises from the notion of shifted geometric
(pre)quantization introduced by Safronov [10].

4.1 Shifted 1-jet stacks Denote by A1 the affine line19 as the derived stack corepresented
by K[z]. That is, A1 = Spec(K[z]) is the derived stack

Spec(K[z]) : B ∈ cdgaK 7→ Hom(K[z], B). (41)

17Recall that on refined local charts, we simply write ker(φ∗α) instead of Cocone(φ∗α).
18This argument follows from the following observations: When restricted to SpecH0(A), the induced morphism
TA → Ω1

A[k] is just a map of finite complexes of free H0(A)-modules. And, at p ∈ SpecH0(A), both TA|p,Ω1
A|p are

complexes of K-vector spaces. For non-degeneracy, we require this map to be a (degree-wise) quasi-isomorphism.
Recall that localizing A at p if necessary, we may assume that the induces map is indeed an (degree-wise)
isomorphism near p. Therefore, the fact we use here is just an analogous result from linear algebra.
19We may also call it the affine addtive group scheme Ga.
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Let T∗[n]X be the n-shifted cotangent stack of the derived Artin stack X (locally of finite
presentation). Consider the derived stack T∗[n]X× A1[n] given by the pullback diagram

J1[n]X := T∗[n]X× A1[n] A1[n]

T∗[n]X ∗,

pr1

pr2

(42)

where A1[n] is the n-shifted affine line corepresented by the polynomial algebra on a variable
in cohomological degree −n. Denote this resulting space by J1[n]X and call it n-shifted 1-jet
stack of X, with the natural projection map as the composition J1[n]X→ T∗[n]X→ X.

Recall from [5] that there is an n-shifted 1-form λ, called the Liouville one-form, on the
cotangent stack T∗[n]X such that the closed 2-form ω := ddRλ is non-degenerate. Hence, T∗[n]X

is in fact n-symplectic. Moreover, from Diagram 42, we have the identifications

LJ1[n]X ≃ pr∗1LT∗[n]X ⊕ pr∗2LA1[n] and TJ1[n]X ≃ pr∗1TT∗[n]X ⊕ pr∗2TA1[n]. (43)

Equivalently, we have the exact triangle

pr∗1TT∗[n]X → TJ1[n]X → pr∗2TA1[n]. (44)

Notice that from the triangle (44), we have a natural morphism pr∗1TT∗[n]X → TJ1[n]X with the
cofiber pr∗2TA1[n]. Since TA1[n] is an invertible quasi-coherent sheaf, we get pr∗2TA1[n] ≃ L[n],
where L is a line bundle. Thus, we obtain a natural pre-n-shifted contact data by using the
perfect complex K := pr∗1TT∗[n]X and the natural map κ : pr∗1TT∗[n]X → TJ1[n]X with the cofiber
pr∗2TA1[n] as above.

Now, it remains to extend the pre-contact data to an n-shifted contact structure. In brief,
we need to represent K (locally) as the cocone of a shifted 1-form satisfying the non-degeneracy
condition. To this end, we construct the following n-shifted 1-form on J1[n]X.

We define (globally) an n-shifted 1-form on J1[n]X by20

α := −ddRz + λ ∈ Γ
(
J1[n]X,LJ1[n]X[n]

)
, (45)

where we simply write z, λ instead of pr∗2z, pr∗1λ, respectively. Then we claim:

Lemma 4.1. Let α, pr1, pr2 be as above. Then we have equivalences (at least locally)

Tpr1 ≃ pr∗2TA1[n], (46)

Cocone(α) ≃ pr∗1TT∗[n]X =: K, (47)

where Tpr1 is the relative tangent complex21 defined by the sequence Tpr1 → TJ1[n]X → pr∗1TT∗[n]X.
We then have the (local) splitting

TJ1[n]X ≃ Cocone(α)⊕ Tpr1 .

20Thanks to the identifications (43).
21Its elements are called vertical tangent vectors.
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Proof. Combining the shift of the natural fiber sequence Tpr1 → TJ1[n]X → pr∗1TT∗[n]X with the
exact triangle (44), we get an equivalence of triangles

pr∗1TT∗[n]X TJ1[n]X pr∗2TA1[n]

pr∗1TT∗[n]X[−1] TJ1[n]X Tpr1 [1],

≃ id ≃

(48)

which gives the identification pr∗2TA1[n]
∼−→ Tpr1 .

By the definition of α, for any vertical vector v ∈ Tpr1 , the contraction ιvα is never nullho-
motopic, and hence we write

Cocone(α) ∩ Tpr1 = {0},

by which we mean the pullback of the diagram Cocone(α) ↪→ TJ1[n]X ← Tpr1 is trivial in
Perf(J1[n]X). Since both Cocone(α),Tpr1 are perfect, we then have the (local) splitting22

TJ1[n]X ≃ Cocone(α)⊕ Tpr1 . (49)

The splitting then gives an exact triangle

Cocone(α)→ TJ1[n]X → Tpr1 , (50)

which induces an equivalence of triangles

pr∗1TT∗[n]X TJ1[n]X pr∗2TA1[n]

Cocone(α) TJ1[n]X Tpr1 .

≃ id ≃

(51)

Thus, we get the identification23 Cocone(α)
∼−→ pr∗1TT∗[n]X and complete the proof.

Finally, using Lemma 4.1, we can satisfy the desired non-degeneracy condition and prove:

Theorem 4.2. Let X be a locally finitely presented derived Artin stack. Then the n-shifted 1-jet
stack J1[n]X has a natural n-shifted contact structure.

Proof. Consider the pre-n-shifted contact data given by the perfect complex K := pr∗1TT∗[n]X and
the natural map κ : pr∗1TT∗[n]X → TJ1[n]X with the cofiber pr∗2TA1[n] as above, where we have
an equivalence pr∗2TA1[n] ≃ L[n], with L a line bundle. It remains to check the (local) contact
non-degeneracy condition.

Let α, λ be as above. By Lemma 4.1, Cocone(α) ≃ pr∗1TT∗[n]X =: K locally. Note that ddRλ is
already n-symplectic on T∗[n]X, and hence non-degenerate on TT∗[n]X. Due to the identification
by Lemma 4.1, ddRα = ddRλ is then non-degenerate on K ≃ Cocone(α). Therefore, the data
(K, κ, L, α) defines an n-shifted contact structure on J1[n]X.

22Over a (minimal) standard form cdga A with an A-point p : SpecA → J1[n]X, the complex p∗TJ1[n]X is a finite
complex of free H0(A)-modules, so are the both complexes Cocone(p∗α), p∗Tpr1 . Since Cocone(p∗α) ∩ p∗Tpr1 =

{0} in each degree, we get the splitting of free modules in each degree, and hence the desired (local) identification
of complexes.
23Using the previous footnote, we actually have a local identification Cocone(p∗α)

∼−→ p∗(pr∗1TT∗[n]X) = p∗K.
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4.2 Contact structures via shifted prequantization

4.2.1 Background on geometric quantization

Classical geometric quantization. Let us briefly recall the notion of geometric quantiza-
tion in the context of differential geometry. Given a smooth symplectic manifold (X,ω) (or a
scheme over a field K of characteristic 0), geometric quantization is a 2-step procedure combining
prequantization and polarization. More precisely, we have:

Definition 4.3. By a prequantization of (X,ω), we mean a particular line bundle with connection
(L,∇) on X such that curv(L,∇) = ω. By a polarization, we mean the choice of a subbundle P

of TX closed under the Lie bracket which is Lagrangian with respect to ω.

Note that on (X,ω), we can define the Hamiltonian vector field Xf associated to the function
f by ıXf

ω = df , and hence the Poisson bracket {f, g}ω := −w(Xf , Xg) = Xf (g) on C∞(X).
When we have a geometric (pre)quantization24 of (X,ω), then it allows us to define a suitable

quantum Hilbert space H := ΓP (X,L) as the space of P-polarizaed sections of L such that we
can construct a Lie algebra representation of (a certain subalgebra A of) (C∞(X), {−,−}ω) on
End(H, [−,−]), which acts on the functions as

f 7→ f̂ := −iℏ∇Xf
− f.

Example 4.4. Every Kähler manifold (M,ω, J) gives rise to a holomorphic Kähler polarization as-
sociated to (M,ω) by setting P := T (0,1)(M), the (−i)-eigenspace subbundle of the complexified
tangent bundle TM ⊗ C.

Remark 4.5. (Relation with contact geometry) The construction above can be given in terms of
the principal U(1)-bundle L× associated with L and the connection 1-form α on X corresponding
to ∇. We then have curv(L×, α) = ddRα = π∗ω, with π : L× → X. In that case, α defines a
contact structure on L×. For more details, see [14].

Shifted geometric quantization. Safronov introduces in [10] the notion of shifted geometric
quantization in the context of derived symplectic geometry. We now outline the main definitions
and some key results of interest. We closely follow [10].

Denote by Ap(n),Ap,cl(n) the derived stacks of p-forms of degree n and closed p-forms of
degree n as introduced in PTVV’s work [9]. Then by construction, we have equivalences

A1(n) ≃ ΩA1(n+ 1) and A1,cl(n) ≃ ΩA1,cl(n+ 1). (52)

By adjunction we can get a map BA1(n)→ A1(n+1), which is an equivalence [10, Lemma 2.1].

Observation 4.6. Iterating these equivalences, we also get an equivalence

BnA1(0)→ A1(n).

However, it should be noted that BnA1,cl(0)→ A1,cl(n) is not an equivalence even if the inclusion
An+1,cl(0)→ A1,cl(n) is an equivalence. For details, we refer to [10, §2.1].

24A sufficient condition for the existence is [ω] ∈ H2(X,Z)
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Note that that we have a morphism of stacks

ddR log : Gm → A1,cl(0) (53)

which, on a cdga R, maps an invertible element f ∈ R× to
ddRf

f
∈ A1,cl(SpecR, 0). Then by

delooping (cf. Observation 4.6), we get the map

c1 : B
nGm → BnA1,cl(0)→ A1,cl(n). (54)

Now, pre-composing c1 with the natural projection A1,cl(n)→ A1(n), we get a morphism

BnGm → A1(n),

which will be denoted again by c1 and lead to the following definition.

Definition 4.7. Let n ≥ 0 and X a derived stack.
1. An n-gerbe on X is a map G : X → Bn+1Gm. We then call its image c1(G) ∈ A1(n + 1)

under the map c1 above the characteristic class of G.
2. An n-gerbe with a connective structure on X is a pair (G,∇), where G is an n-gerbe

on X and ∇ is a nullhomotopy of the characteristic class c1(G) ∈ A1(n+ 1).
3. An n-gerbe with a flat connective structure on X is a pair (G,∇), where G is an

n-gerbe on X and ∇ is a nullhomotopy of c1(G) ∈ A1,cl(n+ 1).
4. Any gerbe (G,∇) with connective structure on X has a curvature curv(G,∇) ∈ A2,cl(n)

defined by the pullback diagram

A2,cl(n) 0

Bn+1Gm A1,cl(n+ 1) A1(n+ 1).
c1

(55)

Example 4.8. Let (G,∇) be an n-gerbe with connective structure on X. When n = 0, the map
G : X→ BGm corresponds to a line bundle as BGm is the classifying space of the line bundles.
Then the map c1 : BGm → A1,cl(1) ≃ A2,cl(0) corresponds the first Chern class of the line
bundle. Thus, the connective structure (G,∇) corresponds to the usual notion of a connection
on the line bundle G and its curvature corresponds to the usual notion of the curvature. For
more examples and details, see [10].

Now, we define the notion of prequantization for shifted symplectic derived stacks.

Definition 4.9. Let (X, ω) be an n-shifted symplectic derived stack. Its prequantization is
an n-gerbe with connective structure (G,∇) such that curv(G,∇) ≃ ω in A2,cl(n).

We can also define a relative version of the prequantization notion for the maps π : X → B

of derived Artin stacks carrying a shifted Lagrangian fibration structure.

Definition 4.10. Let π : X → B be a morphism of derived Artin stacks locally of finite
presentation. A prequantum n-shifted Lagrangian fibration consists of the following data:

1. An n-gerbe G on B.
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2. An extension of the natural relative flat connection on π∗G to a connective structure ∇,
such that the pair (π∗G,∇) defines an n-shifted Lagrangian fibration structure25 on π with
an induced n-shifted symplectic structure on X given by curv(π∗G,∇).

It is also possible to define the prequantization notion for the morphisms π : X → B of
derived Artin stacks carrying a shifted Lagrangian structure. For details, see [10, §2.3].

In the upcoming sections, we discuss several examples of prequantizations from [10] and
provide sample constructions of the induced shifted contact structures.

4.2.2 Prequantization of the cotangent stack Let X be a derived Artin stack locally of finite
presentation and πX : T∗X→ X the natural projection. [5] shows that the cotangent stack T∗X

has a natural Liouville 1-form λ ∈ A1(T∗X, 0) such that 0-shifted symplectic structure on T∗X

is given by ω := ddRλ and that the map πX carries a natural structure of an 0-shifted Lagrangian
fibration. That is, for any x ∈ X, the inclusion of the fiber Xx → T∗X has a 0-shifted Lagrangian
structure.

Now, we consider another interesting structure that πX carries: It is shown in [10, Prop. 2.21]
that πX has a natural structure of a prequantum 0-shifted Lagrangian fibration, determined by
the trivial 0-gerbe G on X together with a connective structure on π∗

XG given by the Liouville
form λ.

By definition, the trivial 0-gerbe is the map G : X → BGm which in fact corresponds to a
trivial line bundle, say L, on X. Moreover, in that case, the connective structure π∗

XG corresponds
to the usual connection ∇ on the trivial line bundle π∗

XL over T∗X, with π : π∗
XL→ T∗X, such

that the connection 1-form is given by ∇ := λ ∈ A1(T∗X, 0).

Denote the trivial Gm-bundle associated with π∗
XL by L×. Here, the frame bundle L× has the

trivialization as the restriction of the trivialization of the original line bundle π : π∗
XL → T∗X,

respecting the Gm-action. Likewise, the projection π : L× → T∗X is the restriction of the
original projection π : π∗

XL→ T∗X.
Since L× is a trivial Gm-bundle, we can view it as the derived stack given by the pullback

L× = T∗X×Gm Gm

T∗X ∗,

π =: pr1

pr2

(56)

where Gm is the affine group scheme as the derived stack corepresented by K[t, t−1]:

Gm = SpecK[t, t−1] : R ∈ cdgaK 7→ Hom(K[t, t−1], R), (57)

which also means Gm(R) = R×. Moreover, from Diagram 56, we have the identifications

LL× ≃ pr∗1LT∗X ⊕ pr∗2LGm and TL× ≃ pr∗1TT∗X ⊕ pr∗2TGm . (58)

Recall also from the previous section that we have a morphism of stacks

ddR log : Gm → A1,cl(0) (59)
25For the precise definition, see [5]. For our purposes, it is useful to know some key results: Once we have such
structure, then (1) the source X is an n-symplectic stack; (2) For any b ∈ B, the inclusion of the fiber Xb ↪→ X

has an n-shifted Lagrangian structure.
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which, on a cdga R, maps an invertible element f ∈ R× to (ddRf)/f ∈ A1,cl(SpecR, 0).

For R = K[t, t−1] = O(Gm) and f := t, we get a global section of L× as t 7→ (ddRt)/t, and
hence a global 0-shifted 1-form α on L× defined by

α = π∗λ+ pr∗2ddR log(t). (60)

By abuse of notation, we may omit pr∗1, π, pr
∗
2 whenever the meaning is clear from the context.

Observation 4.11. For the morphism π : L× → T∗X, we have the fiber sequence

Tπ → TL× → π∗TT∗X,

where Tπ denotes the relative tangent complex. An element of the relative tangent space is called
a relative or vertical tangent vector. That is, Tπ is the space of tangent vectors along the fibers
of L×. Call this space the vertical bundle of TL× and denote it by V erL× . Then we have:

Lemma 4.12. Let α, V erL× be as above. Then we have the following equivalences:

V erL× ≃ cofib(Cocone(α) ↪→ TL×) ≃ pr∗2TGm , (61)

Cocone(α) ≃ π∗TT∗X, (62)

TL× ≃ Cocone(α)⊕ V erL× . (63)

We then call Cocone(α) the horizontal bundle of TL× , denoted by HorL× , and write the
splitting in terms of the horizontal and vertical bundles as

TL× ≃ HorL× ⊕ V erL× . (64)

Proof. Denote the natural morphism Cocone(α) ↪→ TL× by i. Then by definition, we have
Cone(i) = cofib(Cocone(α) ↪→ TL×), the weak quotient of TL× by the image of Cocone(α).

Notice that for v ∈ V erL× , we have π∗(v) ∼ 0, and hence

α(v) = π∗λ(v) +
1

t
ddRt(v) = λ(π∗v) +

1

t
v(t) ∼ 1

t
v(t).

Over any R-point p of L×, p : SpecR → L×, p∗v is a derivation on R×, and hence it maps
tR := p∗t to an invertible element p∗v(tR) of R. It follows that the restriction of α to the
vertical bundle V erL× will take non-zero values only. I.e., for any v ∈ V erL× , the image α(v) is
homotopic to a non-zero element. Therefore, we can write

Cocone(α) ∩ V erL× = {0},

by which we mean the pullback of the diagram Cocone(α) ↪→ TL× ← Tπ is trivial in Perf(L×).
Since both Cocone(α),Tπ are perfect, we then have the (local) splitting26

TL× ≃ Cocone(α)⊕ Tπ. (65)

By the splitting (65), we obtain an equivalence of exact triangles

Cocone(α) TL× Tπ

Cocone(α) TL× Cone(i).

i

id id ≃

(66)
26Over an A-point p with A a minimal standard form cdga, complexes on each side are in fact finite complexes of
free H0(A)-modules, and we have the splitting in each degree.
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Using the notation V erL× := Tπ and the rightmost vertical map on the diagram above, we
conclude

V erL× ≃ Cone(i) := cofib(Cocone(α) ↪→ TL×), (67)

which proves the first equivalence in (61).
Recall that since L× is a trivial Gm-bundle, from the identifications (58), there is an exact

triangle π∗TT∗X → TL× → pr∗2TGm . Now, using the natural triangle TL× → π∗TT∗X → Tπ[1],
we get an equivalence of triangles

π∗TT∗X TL× pr∗2TGm

π∗TT∗X[−1] TL× Tπ[1].

≃ id ≃

(68)

Thus, we obtain an equivalence pr∗2TGm ≃ Cone(i), which gives the second equivalence in (61).
Using the last identification, we then obtain another equivalence of triangles

Cocone(α) TL× Cone(i)

π∗TT∗X TL× pr∗2TGm ,

i

≃ id ≃

(69)

which gives (62). Finally, combining (61) with (62), we then get the homotopy cofiber sequence
Cocone(α)→ TL× → V erL× and the desired splitting in (63).

Now, we are in place of proving the desired result.

Theorem 4.13. Let L× and α be as above. Then the pair
(
Cocone(α) ↪→ TL× ;α

)
defines a

0-shifted contact structure on the derived stack L×.

Proof. By Lemma 4.12, we have the cofiber sequence

Cocone(α) ↪→ TL× → V erL× , (70)

where V erL× ≃ pr∗2TGm . Since TGm ∈ QCoh(Gm) is free of rank 1, pr∗2TGm corresponds to a line
bundle L[0], and hence cofib(Cocone(α) ↪→ TL×) is a line bundle L[0] up to quasi-isomorphism.
Thus, the cofiber sequence (70) defines a 0-shifted pre-contact structure determined by a global
1-form α, with a cofiber V erL× as a certain line bundle.

Now, it remains to promote the pre-contact structure above to a 0-shifted contact structure.
To this end, it suffices to show ddRα is (locally) non-degenerate on Cocone(α). By the definition
of α, we get

ddRα = π∗ddRλ = π∗ω, (71)

which is non-degenerate on π∗TT∗X as ω is a 0-shifted symplectic structure. Note that, from
Lemma 4.12, we obtain Cocone(α) ≃ π∗TT∗X, which gives the desired non-degeneracy condition
for ddRα on Cocone(α) and completes the proof.
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4.2.3 Prequantization of twisted cotangent stacks Recall that if X is a derived Artin stack
locally of finite presentation equipped with a closed 1-form β of degree (n + 1), we define the
n-shifted β-twisted cotangent stack T∗

β[n]X of X to be the fiber product

T∗
β[n]X X

X T∗[n+ 1]X,
Γβ

Γ0

(72)

where Γβ,Γ0 : X→ T∗[n+ 1]X are the graphs of β and 0-section, respectively. Note that from
[5, Corollary 2.4], both morphisms Γβ,Γ0 have (n+ 1)-shifted Lagrangian structures, and hence
the resulting fiber product T∗

β[n]X is an n-shifted symplectic stack. Moreover, [10, Prop. 1.21]
shows that the projection T∗

β[n]X → X carries a natural structure of an n-shifted Lagrangian
fibration.

Regarding a possible prequantum structure on T∗
β[n]X → X, it has been proven in [10,

Theorem 2.24] that if X is a derived Artin stack locally of finite presentation with an n-gerbe G
on X such that β := c1(G) ∈ A1,cl(X,n+ 1), the characteristic class of G, then the projection

π : T∗
c1(G)[n]X→ X

has a natural structure of a prequantum n-shifted Lagrangian fibration determined by G. In
brief, the structure is given as follows:

Observation 4.14. Recall from [10, Prop. 2.21] that πX : T∗[n + 1]X → X has a natural
structure of a prequantum (n+1)-shifted Lagrangian fibration, determined by the trivial (n+1)-
gerbe GX on X together with a connective structure on π∗

XGX given by the Liouville form λX.
In fact, λX ∈ A1(T∗[n + 1]X, n + 1) represents the connective structure on π∗

XGX, namely a
null-homotopy of c1(π∗

XGX) ∈ A1(T∗[n+ 1]X, n+ 2). Note that, from [9, Theorem 2.9], there is
an induced map

A1,cl(T∗[n+ 1]X, n+ 2)→ A1,cl(T∗
c1(G)[n]X, n+ 1).

Now, given an n-gerbe G on X, [10, Prop. 2.21] implies that the image of c1(π∗
XGX) under this

map is exactly c1(π
∗G). Thus, the connective structure on π∗

XGX, given by λX, determines a
suitable connective structure on π∗G satisfying prequantization conditions for π.

Let us denote the induced connective structure on π∗G by λc1(G) in A1(T∗
c1(G)[n]X, n).

Example 4.15. (Construction of a shifted contact structure using a twisted cotangent stack.) Let
X be a derived Artin stack locally of finite presentation with a trivial 0-gerbe G on X and a
characteristic class c1(G) ∈ A1,cl(X, 1).

Consider the twisted 0-shifted cotangent stack πc1(G) : T∗
c1(G)X → X equipped with a pre-

quantum 0-shifted Lagrangian fibration structure determined by G and a connective structure
λc1(G) ∈ A1(T∗

c1(G)X, 0) on π∗G described in the previous observation.
Since the trivial 0-gerbe G corresponds to a trivial line bundle, using the same approach in

Section 4.2.2 with obvious modifications, we define a trivial Gm-bundle π : L×c1(G) → T∗
c1(G)X

and a global 1-form on L×c1(G)

αc1(G) := π∗λc1(G) + ddR log(t). (73)

Then we have:
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Corollary 4.16. Let L×c1(G) and αc1(G) be as above. Then the pair
(
Cocone(αc1(G)) ↪→ TL×

c1(G)
;αc1(G)

)
defines a 0-shifted contact structure on the derived stack L×c1(G).

Proof. The claim follows from Lemma 4.12 and Theorem 4.13 with obvious modifications ac-
cording to Observation 4.14.

4.2.4 Prequantization of the moduli stack of flat G-connections Let us recall some terminology
and key results from [10, §4.5].

Denote by BG the classifying stack of an affine algebraic group G equipped with non-
degenerate invariant symmetric bilinear pairing ⟨−,−⟩ on its Lie algebra. More precisely, it is
defined as the quotient stack

BG = colim

(
∗ ←← G

←←← G×G
←←←←
· · ·

)
, (74)

where the maps are given by the action and projection. Note that BG carries a canonical
2-shifted symplectic structure ω.

Fix the pair (BG,ω). Given a smooth and proper curve C, we let

LocSysG(C) := Map(CdR, BG)27

be the moduli stack of flat G-connections on C and

BunG(C) := Map(C,BG)

be the moduli stack of G-bundles on C. Since BG is 2-symplectic, PTVV’s results for
mapping stacks in [9] imply two important consequences:

1. LocSysG(C) is 0-symplectic.
2. There is a natural closed 1-form of degree 1 on BunG(C), which can be obtained by

integration along C. We denote this form by
∫
C ev∗ω. For more details see [10, §1.5].

Note also that if ⟨−,−⟩ is the Killing form, it follows from the Grothendieck–Riemann–Roch
theorem that the closed 1-form of degree 1

∫
C ev∗ω coincides with the first Chern class of the

determinant line bundle G on BunG(C), see [10, Example 1.26].
Regarding prequantization, we have the identification [10, Prop. 1.24]

LocSysG(C) ≃ T∗∫
C ev∗ωBunG(C), (75)

where
∫
C ev∗ω = c1(G). That is, LocSysG(C) can be equivalently seen as a twisted cotangent

stack of BunG(C) with the twisting 1-form
∫
C ev∗ω ∈ A1,cl(BunG(C), 1). From [10, Prop. 4.22],

there is a natural prequantum 0-shifted Lagrangian fibration structure on

πc1(G) : LocSysG(C)→ BunG(C)

determined by the determinant line bundle G on BunG(C), such that c1(G) =
∫
C ev∗ω, with a

connective structure λc1(G) ∈ A1(LocSysG(C), 0) on π∗
c1(G)G as described in Observation 4.14.

27Here CdR denotes the de Rham stack associate with C. In general, for a derived stack X, its de Rham stack
is defined to be the functor XdR : A 7→ XdR(A) := X(π0(A)red), which corresponds to A-reduced points of X for
A a cdga.
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Now, we consider the Gm-bundle π : L×∫
C ev∗ω

→ LocSysG(C) associated with π∗
c1(G)G. If, in

addition, L×∫
C ev∗ω

is trivial, we can define a global 1-form α∫
C ev∗ω on L×∫

C ev∗ω
as in (73), which

induces the desired contact structure on L×∫
C ev∗ω

by Corollary 4.16.
In other words, we prove:

Corollary 4.17. Let LocSysG(C), BunG(C), G, and L×∫
C ev∗ω

be as above. If, in addition, G is
trivial, then the pair (

Cocone(α∫
C ev∗ω) ↪→ TL×∫

C ev∗ω
; α∫

C ev∗ω

)
defines a 0-shifted contact structure on the derived stack L×∫

C ev∗ω
, where

∫
C ev∗ω = c1(G).

Appendix A: Symplectic Darboux forms with even shifts

For the sake of completeness, we briefly summarize the cases when k/2 is even or odd integer.
Here, the main difference from the case k being odd is about the existence of middle degree
variables. In fact, when k is odd (k/2 /∈ Z), there is no such degree. But if k/2 is even, then
2-forms in the middle degree variables are anti-symmetric. On the other hand, when k/2 is odd,
such forms are symmetric in the middle degree variables. We follow [3, Examples 5.9 & 5.10].

(a) When k/2 is even, say k = −4ℓ for ℓ ∈ N, the cdga A is now free over A(0) generated by
the new set of variables

x−i
1 , x−i

2 , . . . , x−i
mi

in degree − i for i = 1, 2, . . . , 2ℓ− 1,

x−2ℓ
1 , x−2ℓ

2 , . . . , x−2ℓ
m2ℓ

, y−2ℓ
1 , y−2ℓ

2 , . . . , y−2ℓ
m2ℓ

in degree − 2ℓ,

yk+i
1 , yk+i

2 , . . . , yk+i
mi

in degree k + i for i = 0, 1, . . . , 2ℓ− 1. (76)

We also define the element ϕ ∈ (Ω1
A)

k as before. Choose an element H ∈ Ak+1, the
Hamiltonian, satisfying the analogue of classical master equation, and define d on x−i

j , yk+i
j

(no distinguished generator zk contrary to the contact case) as in Equation (11) using
H. Then ddRα0 defines an element ω0 =

∑2ℓ
i=0

∑mi
j=1 ddRx

−i
j ddRy

k+i
j in (Λ2Ω1

A)
k, and set

ω := (ω0, 0, 0, · · · ) as before, which satisfies the requirements by [3, Example 5.9].
(b) When k/2 is odd, say k = −4ℓ−2 for ℓ ∈ N, A is freely generated over A(0) by the variables

x−i
1 , x−i

2 , . . . , x−i
mi

in degree − i for i = 1, 2, . . . , 2ℓ,

z−2ℓ−1
1 , z−2ℓ−1

2 , . . . , z−2ℓ−1
m2ℓ+1

in degree − 2ℓ− 1,

yk+i
1 , yk+i

2 , . . . , yk+i
mi

in degree k + i for i = 0, 1, . . . , 2ℓ. (77)

Choose an element H ∈ Ak+1, the Hamiltonian, satisfying the analogue of classical master
equation

2ℓ∑
i=1

mi∑
j=1

∂H

∂x−i
j

∂H

∂yk+i
j

+
1

4

m2ℓ+1∑
j=1

( ∂H

∂z−2ℓ−1
j

)2
= 0 in Ak+2. (78)

Define d on x−i
j , yk+i

j as in Equation (11) using H, and set dz−2ℓ−1
j :=

1

2

∂H

∂z−2ℓ−1
j

.

We define the element ϕ ∈ (Ω1
A)

k by

ϕ :=
2ℓ∑
i=0

mi∑
j=1

[
− ix−i

j ddRy
k+i
j + (−1)i+1(k + i)yk+i

j ddRx
i
j

]
+ k

m2ℓ+1∑
j=1

z−2ℓ−1
j ddRz

−2ℓ−1
j . (79)
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Then ddRα0 defines an element ω0 =
∑2ℓ

i=0

∑mi
j=1 ddRx

−i
j ddRy

k+i
j +

∑m2ℓ+1

j=1 ddRz
−2ℓ−1
j ddRz

−2ℓ−1
j

in (Λ2Ω1
A)

k, and set ω := (ω0, 0, 0, · · · ) as before, which satisfies the desired properties by
[3, Example 5.10].

Observation A.1. For k ̸≡ 2 mod 4, the virtual dimension vdim A is always even. Otherwise,
it can take any value in Z. More precisely, for any k < 0 we have

vdim A =


0, if k is odd,

even in Z, if k/2 is even,

any value in Z, if k/2 is odd.

Appendix B: Symplectic Darboux models for derived Artin stacks

Now, we give the prototype construction from [1, Theorem 2.10]:

Example B.1. Let (X, ω) be a k-shifted symplectic derived Artin K-stack and x ∈ X. We
construct a local model with an atlas for the case k odd, say k = −2ℓ− 1 for ℓ ∈ N.

We will essentially obtain either analogous or identical equations as in the case of shifted
symplectic derived schemes (cf. § 2.2), but with additional finitely many generators in degree
k − 1. It means that our model will still rely on the inductively constructed sequence of cdgas
as in Equation (2) with A = A(−k + 1) instead of A(−k).

The key idea is that the extra generators in degree k − 1 would not play an essential role.
This is because the main ingredients of the construction in § 2.2, namely ω0, H, ϕ, do not involve
any of these extra variables due to degree reasons.

Applying Theorem 3.5 to (X, ω), let us start with the construction of a minimal standard form
open neighborhood (A,φ, p) of x: Let A(0) be a smooth K-algebra of dimm0, choose x01, . . . , x

0
m0

such that ddRx01, . . . , ddRx0m0
form a basis for Ω1

A(0). Then we define A, as a commutative graded
algebra, to be the free graded algebra over A(0) generated by the variables

x−i
1 , x−i

2 , . . . , x−i
mi

in degree (−i) for i = 1, 2, . . . , ℓ,

yk+i
1 , yk+i

2 , . . . , yk+i
mi

in degree (k + i) for i = 0, 1, · · · ℓ,
wk−1
1 , wk−1

2 , . . . , wk−1
n in degree (k − 1), (80)

where m1, . . . ,mℓ ∈ N and n = dimH1(LX|x), the (minimal possible) relative dimension of φ.
Then we define an element ω0 =

∑ℓ
i=0

∑mi
j=1 ddRx

−i
j ddRy

k+i
j in (Λ2Ω1

A)
k, and ω := (ω0, 0, 0, . . . )

as before.
Choose an element H ∈ Ak+1, the Hamiltonian, satisfying the classical master equation in

(10). Then we define the internal differential on A by d = 0 on A(0) and by Equation (11) on
the generators x−i

j , yk+i
j for each i, j. As discussed before, the condition on H above is equivalent

to saying “dH = 0”. Note that we do not specify dwk−1
j for j = 1, . . . , n, and hence d is not

completely determined on A yet. But, by [1, Theorem 2.10], wk−1
1 , wk−1

2 , . . . , wk−1
n do not play

any significant role in the construction, and hence can be chosen arbitrarily. In fact, from the
minimality argument, we have dwk−1

j |p = 0 for each j.
Now, choose ϕ :=

∑ℓ
i=0

∑mi
j=1

[
− ix−i

j ddRy
k+i
j + (k + i)yk+i

j ddRx
i
j

]
, then dH = 0 in Ak+2,

ddRH + dϕ = 0 in (Ω1
A)

k+1, and ddRϕ = kω0.

Let B be the graded sub-cdga of A over A(0) generated by the variables xij , y
i
j only, with

inclusion ι : B ↪→ A. Since ω0, H, ϕ above do not involve any of wk−1
j for degree reasons, H ∈ B,
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and ω0, ϕ are all images under ι of ω0
B, ϕB, respectively. Then ωB := (ω0

B, 0, 0, . . . ) is a k-shifted
symplectic structure on V = SpecB such that the pair (B,ωB) is in Darboux form as in Section
2.2, and B is minimal at p. By construction, we have

SpecB = V
j:=Spec(ι)←−−−−−− U = SpecA

φ−→ X

such that the induced morphism τ(U)
τ(j)−−→ τ(V) between truncations is an isomorphism (as

H0(A) ≃ H0(B)), and φ∗(ω) ∼ j∗(ωB) except in degree k − 1.

Remark B.2. For the other cases (a) k ≡ 0 mod 4, and (b) k ≡ 2 mod 4, the cdgas A are the
corresponding algebras generated by the variables as in Equations (76) and (77), respectively,
with modification by adding the generators wk−1

1 , wk−1
2 , . . . , wk−1

n in degree k − 1.
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