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Abstract

Ext groups are fundamental homological invariants which have important applications in homo-
topy theory and algebra. In particular, they appear in the classical universal coefficient theorem,
a key computational tool in homotopy theory. Motivated by the goal of extending such tools
to synethetic homotopy theory, we develop the theory of Yoneda Ext groups [43| over a ring in
homotopy type theory (HoTT) and describe their interpretation into an oo-topos. The Yoneda
approach to Ext groups does not require projective or injective resolutions, which is a crucial in
HoTT since we do not know that such resolutions exist. While it produces group objects that
are a priori large, we show that the Ext! groups are equivalent to small groups, leaving open the
question of whether the higher Ext groups are essentially small as well. We also show that the
Ext! groups take on the usual form as a product of cyclic groups whenever the input modules
are finitely presented and the ring is a PID (in the constructive sense).

When interpreted into an co-topos of sheaves on a 1-category, our Ext groups recover (and
give a resolution-free approach to) sheaf Ext groups, which arise in algebraic geometry [14].
(These are also called “local” Ext groups.) We may therefore interpret results about Ext from
HoTT and apply them to sheaf Ext. To show this, we prove that injectivity of modules in HoTT
interprets to internal injectivity in these models. It follows, for example, that sheaf Ext can be
computed using resolutions which are projective or injective in the sense of HoT'T, when they
exist, and we give an example of this in the projective case. We also discuss the relation between
internal ZG-modules (for a O-truncated group object GG) and abelian groups in the slice over BG,
and study the interpretation of our Ext groups in both settings.
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1. Introduction

We begin the study of homological algebra in homotopy type theory (HoTT) by developing the
theory of Ext groups of modules over a ring R. Ext groups are important algebraic invariants,
and also have many applications in homotopy theory. Classically, Ext groups are ingredients in
the universal coefficient theorem for cohomology, and we hope to use the results here to obtain a
universal coeflicient spectral sequence in homotopy type theory. In addition, the results discussed
here were used in [5] to show that certain types must be products of Eilenberg—Mac Lane spaces.

It is common to define Ext groups in terms of injective or projective resolutions, as these
often exist in classical settings. However, we do not know whether such resolutions generally
exist in HoTT. (For instance, the usual way of constructing projective resolutions uses that free
modules are projective, which is not provable in HoTT.) We therefore follow a less common
approach to defining Ext groups which avoids resolutions, namely the approach of Yoneda [43,
42]. This approach is also described in [25]. As we will see, carrying out this approach in HoTT
is not straightforward, and univalence will play a key role in our definition of Ext!.

In this approach, given modules A and B over a ring R, the n-th Ext group Ext's(B, A) is
defined as the set of path components of the space of length-n exact sequences

0—+A—FE —-E—---—E,—-B—=0

of R-modules. For m = 1, this definition can be elegantly carried out in HoTT, by virtue of
univalence. Specifically, we define SESg(B, A) to be the type of short exact sequences from
A to B (Definition 2.1.2). Using univalence, we see that paths in SESgr(B, A) correspond to
isomorphisms between short exact sequences, so our type is capturing the correct notion. We
define (Definition 2.1.5)

Exth(B,A) = |SESg(B, A)llo.

The definition of Ext; for n > 1 is more difficult in HoTT, because we do not know how to
correctly represent the space of length-n exact sequences. Instead we define Extz(B, A) to be
the set-quotient of a certain type ES% equipped with a relation (Definition 2.4.3). This approach
is described in [25], and has been formalized in HoTT in [12] for R = Z. We show that these
types are abelian groups through an operation known as the Baer sum [1].

One aspect of these resolution-free definitions of Ext groups is that they produce types lying
in a larger universe. We show that, for n = 1, our Ext groups are essentially small:

Theorem 2.2.2. Let B and A be abelian groups. We have a natural equivalence
SESz(B,A) ~ (K(B,Q) — K(A,3)).
In particular, SESz(B, A) and Exty (B, A) are equivalent to small types.

Here —, denotes the type of pointed maps. This result easily implies that SESg(B, A) is
essentially small for modules over a general ring R (Corollary 2.2.3). However, we don’t know
whether the higher Ext groups are essentially small in general. From this theorem, we also
deduce the usual six-term exact sequences of Ext groups from a fibre sequence, in the special
case R =7 (Propositions 2.3.1 and 2.3.2).

The usual long exact sequences also exist, and the contravariant one has been formalized for
Z in [12]. Using these, we show in Proposition 2.5.4 that our Ext groups can be computed using
projective (and injective) resolutions, whenever one is at hand. It follows that our Ext groups
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yield right-derived functors of the hom-functor of modules whenever one has enough projectives
or injectives. More generally, we show:

Theorem 2.4.12. The large §-functor {Exty(—, A) by s universal, for any R-module A.

The definition of a universal J-functor is recalled in Definition 2.4.9.

We stress that the higher Ext groups Ext7 (B, A) need not vanish for n > 1 in our setting.
Indeed, there are models of HoTT in which these are non-trivial, as we discuss below. Never-
theless, we show that these Ext groups do vanish whenever R is a (constructive) PID and the
module B is finitely presented (Corollary 2.6.8). Moreover, when A is also finitely presented,
then we get the usual description of Exth(B, A) as a product of cyclic groups (Proposition 2.6.5).

For a (0O-truncated) group G, it is well-known that HoTT lets one work G-equivariantly
by working in the context of the classifying type BG. In an oo-topos, this corresponds to
working in the slice over the object BG. We study our constructions from this perspective in
Section 2.7, which later lets us work out concrete examples of the interpretation of our Ext groups
in Section 3.4. An abelian group “in the context of BG” is simply a map BG — Ab. Since the
type of modules is 1-truncated, it is equivalent to replace BG with a pointed, connected type X
(and G by 71 (X)). To emphasize that our proofs do not require any truncation assumptions, we
choose to work with such an X. We show that the category X — Ab is equivalent to the category
of Zm (X )-modules (Proposition 2.7.3), where Zm(X) is the usual group ring. When working
in the context of X, we carry out operations pointwise. For example, given B, A : X — Ab, we
form the “Q2X-equivariant” type of short exact sequences x — SESz(B,, A;) : X — U. Of course,
we can also consider the type SESz. (x)(Bx, A«) of short exact sequences of Zm(X)-modules,
where B, and A, are the Zm;(X)-modules corresponding to the families B and A. These are
related:

Theorem 2.7.5. For any B, A : X — Ab, we have an equivalence
T SES2(B:, As) ~ SESzr,(x)(Bs, As).
z: X
We deduce the usual formula relating Ext! and cohomology with local coefficients:

Corollary 2.7.6. For any M : X — Ab, we have a group isomorphism
HY(X; M) =~ Exty, x)(Z, M.),

where the left-hand side is the cohomology of X with local coefficients in M, and Z on the right
has trivial Zmi(X)-action.

In Section 3, we interpret our main results and constructions from HoTT into an co-topos X.
Given a ring R in an oco-topos, it was shown in [13, Theorem 4.3.4] that the interpretation of the
category of (“small”) R-modules from HoTT yields an internal category in X which represents the
presheaf sending an object X € X to the category of (X x R)-modules in the slice X/X. (Here
(X xR) is a ring object in this slice.) Building on this, in Section 3.1 we show that the object of
short exact sequences SESg(B, A) between two modules A and B in X represents the presheaf

X'—)SES(XXR)(X X B,X XA) . X°P HS,

where SES(x,pr) denotes the (1-truncated) space of short exact sequences between (“small”)
(X xR)-modules. From this description we show how to recover the classical Ext groups in
Corollary 3.1.4.
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An interesting result is that in certain co-toposes, the interpretation of our Ext groups re-
covers sheaf Ext (Definition 3.3.13), which has been studied in algebraic geometry [14]. A
consequence of this is that we can study sheaf Ext via the internal logic of a (higher) topos,
and indeed the statements we prove for Ext in HoTT can be interpreted to give results for sheaf
Ext. Moreover, this shows that our definitions generalize Yoneda’s approach from ordinary Ext
groups to sheaf Ext.

The precise theorem is:

Theorem 3.3.14. Suppose sets cover in X. For any X € X, ring R € X/X and R-module
B, the functor Ext'y(B,—) : Modg — Aby,x is naturally isomorphic to the sheaf Ext functor
Ext(B, -).

The meaning of “sets cover” is that any object admits an effective epimorphism from a 0-
truncated object (Definition 3.3.6). Sets cover in any oo-topos of oo-sheaves on a 1-category.

Sheaf Ext is traditionally defined using injective resolutions (which always exist in these
models), however our definition does not rely on the existence of enough injectives. To prove
this theorem we show that injectivity in HoTT interprets to internal injectivity in these oo-
toposes (Corollary 3.3.12), which in turn follows from showing that internal injectivity is stable
by base change in these models. Our proof of stability uses (and partly generalizes) results of
Roswitha Harting [17, Theorem 1.1] (for abelian groups) and Blechschmidt [3, Proposition 3.7|
(for modules) which show that internal injectivity of modules is stable by base change in any
elementary 1-topos. In addition, |3, Theorem 3.8| shows that (externally) injective modules are
always internally injective, which means that our Ext groups can be computed using the same
resolutions used for sheaf Fxt.

We also study various notions of projectivity of modules in X, namely the usual (external)
projectivity, internal projectivity, and the notion of projectivity from HoTT. In order to under-
stand the relation between these notions, we provide examples which demonstrate that neither
of external and internal projectivity imply the other (Examples 3.4.8 and 3.2.12). The example
of an internally projective module that is not externally projective is an adaptation of an argu-
ment by Todd Trimble. Moreover, we show that free modules on internally projective objects
satisfy the notion of projectivity of modules from HoTT (Proposition 3.2.5). Using this fact, we
demonstrate that our higher Ext groups need not vanish even over Z by computing a nontrivial
Ext}. There are also known computations of sheaf Ext which demonstrate this.

Finally, in Section 3.4 we study the theory developed throughout Section 3 in some concrete
situations. In particular, we relate our Ext groups of abelian groups in a slice X/BG to Ext
groups of abelian groups in the base X (Proposition 3.4.2), and deduce a vanishing result (Corol-
lary 3.4.4). We also generalize another result of Harting (Proposition 3.4.5), and discuss the
connection between our Ext groups in the slice 8§/ BG and ordinary Ext groups of ZG-modules
(Example 3.4.9).

Formalization Many of the results from Section 2 have been formalized in HoTT and some
have been contributed to the Coq-HoTT library [2] under the namespace HoTT.Algebra . AbSES.
This includes the (contravariant) six-term exact sequence and the Baer sum, the latter of which
was formalized with the help of Jacob Ender.

Results about the higher Ext groups, including their construction, is currently in the separate
repository github.com /jarlg/Yoneda-Ext. The main result contained therein is the (contravari-


https://github.com/jarlg/Yoneda-Ext

Ext groups in Homotopy Type Theory 21

ant) long exact sequence of Ext groups associated to any short exact sequence. More information
can be found in [12].

All of our formalization has been done for Ext groups over the ring Z for pragmatic reasons.

Open questions We list some outstanding questions.

1. In HoTT, is the abelian group Ext%(B,A) equivalent to a small type for n > 2?7 Is it
independent of the universe for n > 2? (The case n = 1 is answered by Theorem 2.2.2.)

2. In HoTT, are injectivity and projectivity of R-modules (Definitions 2.5.1 and 2.5.3) inde-
pendent of the universe?

3. In an oo-topos, do HoTT-injectivity and HoTT-projectivity of R-modules only depend
on the 1-topos of O-truncated objects? Do they agree with internal injectivity and inter-
nal projectivity?! These would follow from proving that internal injectivity and internal
projectivity are pullback stable.

4. Does the interpretation of Ext,(B, A) into an oco-topos depend only on the 1-topos of 0-
truncated objects? (For oo-toposes in which sets cover, this is answered by Theorem 3.3.14.)

Notation and conventions Our setting is Martin-Lo6f type theory with a hierarchy of univalent
universes, as in the HoTT Book [38], whose notation we generally follow. Univalence and function
extensionality are taken as axioms, and are frequently used implicitly. The only HITs we require
are pushouts and truncations. All of our groups, rings and modules are assumed to be sets (i.e.,
O-truncated). We write U for a fixed universe, and U, for the universe of pointed types. Section 3
has its own paragraph on notation.

2. Ext in HoTT

In this section, we develop the theory of Yoneda Ext groups in HoTT. Many of the results we
show have classical analogues, in which case our contribution is the verification that these results
hold in our setting as well. Nevertheless, our proofs and definitions make use of univalence and
truncations, and we make constructive considerations (particularly in Section 2.6), all of which
do not feature in the traditional theory.

Let R be a (O-truncated) ring throughout this entire section.

2.1 The type of short exact sequences Fix two left R-modules A and B throughout this
section. Below we define the type SESgr(B, A) whose elements are short exact sequences

0—>A1>E£>B—>O

in Modg. The type SESg(B, A) is a 1-type, and we define the set Ext}%(B, A) of extensions to
be its set-truncation. By characterizing paths in SESg(B, A), we will show that an extension is
trivial if and only if it is merely split.

A homomorphism of R-modules is an epimorphism (resp. a monomorphism) if and only if
its underlying function is surjective (resp. an embedding). We write Epip(E, B) and Monogr(A, E)
for the set of R-module epimorphisms and monomorphisms, respectively.

!David Wirn has now shown that internal projectivity does not imply HoTT-projectivity; see [39, Theorem 7].
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Definition 2.1.1. Let A 5> E 2 B be two composable homomorphisms in Modr. Whenever
the composite poi is trivial, there is a unique induced homomorphism i’ : A — ker(p). If 7’ is an
epimorphism, then ¢ and p are exact:

IsExact (i, p) == > IsEpi(i’).
1T, P(i(a)=0

Definition 2.1.2. The type of short exact sequences from A to B is:

SESRr(B, A) Z Z Z IsExact(i, p).

E:Modgr i:Monogr(A,E) p:Epigp(E,B)
We often denote a short exact sequence by its middle module E, and write ig : A — FE and
g : E — B for the inclusion and projection homomorphisms. The type is pointed by the split
short exact sequence 4 —2 A @ B P5, B.

As defined, SESR quantifies over Modgr and is therefore a large type. It is moreover a 1-
type, since Modpg is a 1-type, ¢ and p range over sets, and IsExact(i,p) is a proposition. This
mirrors the classical fact that the category of module extensions of B by A—whose maps are
homomorphisms F — E’ making the relevant triangles commute—is a groupoid. The following
proposition strengthens this connection:

Proposition 2.1.3. For short exact sequences A SEABadAL RS B, we have
(E =sesp(B,a) F) =~ Z (poi=j)AN(p=qo9).
$:Mod g (E,F)
Proof. Tt follows from the characterization of paths in ¥-types and transport in function types
that
(E =sesgp(B,a) F) =~ Z (poi=j)A(p=qo¢),

6 EXF
where £ = F denotes R-module isomorphisms. The stated equivalence now follows from the
short five lemma. O

This lets us compute the loop space of SESg(B, A) as in [29].
Corollary 2.1.4. We have a natural isomorphism ( ) : QSESR(B, A) ~ Modr(B, A) of groups.

Proof. By the previous proposition, a path A® B =sgs,, A® B corresponds to a homomorphism
¢: A® B — A® B which respects ing and prg. Thus we get an R-module homomorphism
¢ : B — A as the composite

6:B-""s AeB -5 A0B "4 A
Conversely, for any homomorphism f : B — A, we can define the homomorphism
(a,b) — (a+ f(b),b) : A®B - A® B

which respects ing and prg. These associations are easily shown to be mutually inverse, yielding
a bijection QSESR(B, A) ~ Modg(B, A). To see that it’s an isomorphism of groups, consider a
composite path ¢ - 1. The associated R-module homomorphism A ® B — A @ B is given by the
composite

~ ~

(a,b) — (a + $(b),b) — (a+ 6(b) + (), b).
Hence m = ngﬁ + 12, as required. O
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In [25], Mac Lane produces the set (underlying the abelian group) of extensions by applying
mo to the groupoid of short exact sequences. We now do the corresponding thing:
Definition 2.1.5. The set of extensions of B by A is Exth(B, A) := ||SESz(B, A)|.
The following proposition characterizes trivial extensions.

Proposition 2.1.6. Let E be a short exact sequence from A to B. Then E is trivial in
Ext}%(B, A) if and only if p merely splits, i.e., the following proposition holds:

H Z pos:idBH.

s:Modg(B,E)

Proof. First of all, by the characterization of paths in truncations [38, Theorem 7.3.12] we have

(IBlo=gx1,(5,4) 0) = ||E =sespp,4) A® BJ.

Forgetting about truncations, the right-hand side holds if and only if p splits, by the usual
argument. This in turn implies the statement on the truncations. O

We conclude this section by showing that Ext}, defines a bifunctor which lands in abelian
groups. This is also shown in [12, Section 3.2], but we give a different proof.

Definition 2.1.7. Let A — E — B be a short exact sequence of R-modules.
(i) For f: A — A’ the pushout f.(FE) of E along f is the short exact sequence defined by
the dashed homomorphisms below:

Here the curved arrow is defined to make the triangle commute and to be zero on A’.
(ii) For g : B’ — B, the pullback g*(E) of E along g is the short exact sequence defined
by the dashed homomorphisms below:

Here the curved arrow is defined to make the triangle commute and to be zero into B’.

For any R-module M, these operations define functions
f«:SESR(M, A) — SESg(M,A’) and g¢*:SESg(B, M) — SESg(B', M).

The pushout and pullback operations commute (in the sense that f.g*(E) = ¢* f«(F) when-
ever this expression makes sense) meaning Exth(—, —) is a bifunctor into Set. This has been
formalized in [12, Proposition 9]. Before making this bifunctor land in Ab, we also need to detect
pushouts (and pullbacks) of short exact sequences, in the following sense.
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Lemma 2.1.8. Suppose given a diagram

with short exact rows. If B =idp, then there is a path a(E) = F of short exact sequences. [

The dual statement for pullbacks requires the leftmost vertical homomorphism to be the
identity. For a proof, the reader may consult |12, Proposition 7| or Lemmas III.1.2 and III1.1.4
in [25].

That Ext};i(B , A) is an abelian group follows from the following proposition.

Proposition 2.1.9. The contravariant functor Exth(—, A) takes arbitrary (set-indexed) coprod-
ucts to products, and the covariant functor ExtE(B, —) preserves finite products.

Proof. We first show that Ext}g(—,A) takes arbitrary coproducts to products. To that end,
let X be a set and consider a family B : X — Modgr. Theorem 3.3.10 of [13] produces an
exact coproduct functor @y : (X — Modr) — Modp from the category of X-indexed families
of R-modules to R-modules. We will show that the natural map ¢ : Exth(ED,.x Bz, 4) —
IL.x Exth(B,, A) is a bijection for any R-module A. This natural map is defined as follows.
Since we are defining maps between sets, we may pick representatives of extensions. Given a
short exact sequence
A—FE — @ B,
z: X

define E, to be the result of pulling back E along the natural map B, — @y B for z : X. A
map in the inverse direction is given as follows. A family (A — F, — By)..x of short exact
sequences yields a short exact sequence

@A%@Fx %@Bz
X z: X z: X

by exactness of @y, which by pushing out along V : @A — A yields an element of

EXt}%(@X B7 A)
Starting from a short exact sequence A — E — @y B, the following diagram exhibits the
bottom row as the pushout of the top row by Lemma 2.1.8, showing that ¢ is a section:

@XA B @z:X Ex — @x:X Bm

[ |

H
A sy B » @D.,.x Bz

Here the middle vertical arrow is induced from the maps (E, — E),.x coming from the definition
of E, as a pullback.

Similarly, for any family F' := (A — F, — By)..x, the following diagram exhibits the top
row as the pullback of the bottom row along By — €y B, for any y : X, since the composite of
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the left vertical maps is the identity on A:

A F, By

l | |

v ! H

A—V.P, v Fr — D,.x B:.

Here the maps from the top row to the middle row are given by the inclusion of the y-summand.
This shows that ¢ is a retraction, hence a bijection.

To show that Ext}z(B, —) preserves finite products, it suffices to check that it preserves
the empty product and binary products. The former is clear, so we proceed to handle binary
products. The natural map Extk(B, Ag ® A;) — Exth(B, Ag) x Exth(B, A1) is given by pushing
out along the two projections of Ay @ Ay. To get a map in the opposite direction, we take the
biproduct of the given extensions (using that biproducts are exact) and then pull back along
A : B — B ® B. Showing that these two maps are inverses is straightforward. O

Corollary 2.1.10. Let A and B be R-modules. The set EXtE(B, A) is naturally an abelian group.

Proof. We have just shown that the functor Extk(B, —) : Modp — Set preserves finite products.
It follows that it preserves group objects. But any R-module is itself an abelian group object in
Modp (in a unique way), so we are done. O

The binary operation on Exth(B, A) is called the Baer sum. A concrete description of this
operation, which has been formalized in joint work with Jacob Ender, is discussed in [12, Sec-
tion 3.3]. We also mention that if the ring R is commutative, then Ext}%(B, A) is naturally an
R-module.

We also record the following lemma for later use.

Lemma 2.1.11. Let f: A — A’ and g : B' — B be isomorphisms of R-modules. For any short
. iof—1 14
exact sequence A — E 2 B, we have g* f,(E) = (A’ I U N B). O

2.2 Classifying extensions and smallness of Ext! We remarked after Definition 2.1.2 that
SESpR is a large type, and consequently Ext}g is a large abelian group. This is not surprising,
since our definition mirrors that of the external Yoneda Ext groups in an abelian category, and
examples of abelian categories are known where these are proper classes. However, our Ext}%
groups turn out to be equivalent to small types.

In this and the next sections we will be working with fibre sequences, whose definition we
now recall.

Definition 2.2.1. A fibre sequence consists of a sequence F i>* X i>* Y of pointed maps
equipped with a pointed homotopy witnessing that f o4 is constant such that the induced map
F — fib; is an equivalence.

Recall that |6, Theorem 5.1] produces the following equivalence of categories for n > 2:

K(—,n): Ab ~ { pointed, (n—1)-connected n-types } : Q".
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A (pointed) map f between (n—1)-connected n-types is (n—1)-connected if and only if Q"(f) is
(—1)-connected (i.e., an epimorphism), so these classes of maps correspond under this equiva-
lence. Moreover, like any equivalence of categories, this equivalence preserves pullback squares.
By combining these facts, we see that the following classes of squares correspond under this
equivalence:

— E K(A, n)J*> K(E,n)
| | |
— B

s — 5 K(B,n)

O4—

Here, a square of the kind on the left is precisely a short exact sequence A — E — B, and
a square of the kind on the right precisely says that K(A,n) — K(E,n) — K(B,n) is a fibre
sequence. In other words, short exact sequences are sent to fibre sequences, and vice-versa, under
the stated equivalence. We use this to prove the following;:

Theorem 2.2.2. Let B and A be abelian groups. We have a natural equivalence
SESz(B,A) ~ (K(B,2) —y K(A,3)).
In particular, SESz(B, A) and Ext},(B, A) are equivalent to small types.

The right-hand side of the equivalence above is moreover equivalent to (K(B,n) —. K(4,n+
1)) for n > 2, since ) is an equivalence in this range. (See [6, Theorem 6.7], with their n = 0
and their k£ equal to our n. Their F is our €).) The right-hand side is also equivalent to
(K(B,n) — BAut(K(A,n))), since K(4,n + 1) is the 1-connected cover of BAut(K(4,n)) ([33]
and |5, Proposition 5.9]).

Proof. We define maps in both directions and show that they are mutual inverses. To go from
left to right, we apply K(—,3) to a short exact sequence A — E — B to get a fibre sequence,
then we negate the maps and take the fibre:

—K(%,3) —K(p,3)

K(B,2) -------5 » K(4,3) K(E,3) K(B,3).
The fibre is naturally equivalent to K(B,2), as displayed, since the three rightmost terms form
a fibre sequence. This process yields a map from left to right.

Conversely, given a map f : K(B,2) —. K(4, 3), we get a fibre sequence
K(A4,2) — F — K(B,2) -1 K(4,3),

where F' is a pointed, 1-connected 2-type. Taking loop spaces twice yields a short exact sequence
A — Q?F — B of abelian groups.

We first consider the composite starting and ending at SESz(B, A). Starting with a short
exact sequence A — E — B, we apply K(—, 3), negate the maps and take three fibres, producing
the sequence

K(,2) K(p,2)

K(A,2) K(E,2) —22, K(B,2).

Here we have used that taking three fibres negates maps, by [38, Lemma 8.4.4]. We then apply
2, which yields the original short exact sequence, since Q2 o K(—,2) is the identity.
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For the composite starting and ending at (K(B,2) —, K(4,3)), we will use that the map
Q: (K(B,3) =« K(4,4)) — (K(B,2) =« K(A, 3))

is an equivalence. Write B for the inverse. This equivalence implies that any map ¢ : K(B,2) —.
K(A,3) fits into the following fibre sequence:

K(B,2) —2 K(A,3) —— fib_py, —— K(B,3) —2% K(A,4).

Applying Q3 to the middle three terms produces the short exact sequence associated to ¢, but
with the maps negated. Since Q3 is an equivalence and commutes with negation of maps, this
means that the middle three terms are equal to K(—,3) applied to the short exact sequence
associated to ¢ with the maps negated. It immediately follows that the composite starting and
ending at (K(B,Z) — K(A4, 3)) is equal to the identity as well, so the maps we defined are
mutual inverses.

It is straightforward to check that the map from right to left is natural in both B and A. [

Theorem 2.2.2 is about abelian extensions of abelian groups. Results similar to Theorem 2.2.2,
but for central extensions, appear in [6, 27, 28, 31|, where one takes n = 1.

Corollary 2.2.3. Let B and A be R-modules. Then both SESg(B, A) and Exth(B, A) are equiv-
alent to small types.

Proof. Let U : Modr — Ab denote the forgetful functor. The fibre fib,(E) of the induced map
u : SESp(B,A) — SESz(UB,UA) over an extension E of abelian groups is equivalent to the
type of R-module structures on £ which make ¢ and p into R-module homomorphisms. Since the
type of R-module structures on F and the two conditions are all small, this fibre is equivalent
to a small type. Now we use that SESr(B,A) ~ > p.ses,wp,va) fibu(E), where the latter is
equivalent to a small type. O

Remark 2.2.4. Classically, one argument that the external Ext group Ext}(B, A) is small is
that the underlying set of any extension E of A by B is isomorphic to the product set A x B.
However, this can fail in models of HoTT, such as in the Sierpinski oco-topos, as we show in
Remark 3.2.11. If we allow more general situations, smallness of external Ext can also fail. For
example, [41] describes a locally small abelian category in which the external Yoneda Ext group
Ext%(Z, Z) can be a proper class for a certain object Z. We believe that this category can arise
as the category of abelian group objects in an elementary oo-topos of G-spaces, where G is the
free abelian group on a proper class of generators, and for each object, all but a set of generators
are required to act trivially. In this setting, Z is the interpretation of the integers, and so the
interpretation of our Ext%(Z, Z) is zero, since the integers are projective in the sense of HoTT
(see Definition 2.5.1 and Proposition 2.5.2). This illustrates that it is somewhat surprising that
the interpretation of Exth(B, A) is small in every model of HoTT.

Remark 2.2.5. It follows from the equivalence SESz(B,A) ~ (K(B,2) —. K(A,3)) in Theo-
rem 2.2.2 that SESz(B, A) is independent of the choice of universe containing A and B. There-
fore, the same holds for Ext%(B ,A). The argument in the proof of Corollary 2.2.3 shows that
these statements are also true when Z is replaced by a general ring R, since the set of R-module
structures on an abelian group F is independent of the choice of universe.
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2.3 The six-term exact sequences For A — F — B a short exact sequence of R-modules
and M another R-module, there are covariant and contravariant six-term exact sequences of
abelian groups

0 — Modg(M, A) 2 Modg(M, E) £ Mod g (M, B)
— Exth(M, A) 2 Exth(M, E) 25 Exth (M, B)
and
Exth (A, M) = Exth(E, M) &~ Exth,(B, M)
« Modpg(A, M) <= Modg(E, M) ¢~ Modg(B, M) « 0.

These can be proved following Theorem 3.2 of [25|, and the contravariant version has been
formalized in [12, Proposition 19]. Here we find it interesting to give different arguments in the
special case where R = Z.

Proposition 2.3.1. Let A s E 2 B:Ab be a short ezact sequence, and M : Ab. Then
SESy (M, A) 5 SES, (M, E) 25 SES (M, B)
s a fibre sequence, where the maps are given by pushing out.
Proof. Applying K(—, 3) to the given short exact sequence produces a fibre sequence
K(A4,3) —» K(E,3) — K(B,3).

Since (Z —, —) preserves fibre sequences for any pointed type Z, we can apply (K(M,2) —, —)
to obtain a fibre sequence

(K(M,2) =, K(4,3)) — (K(M,2) =, K(E,3)) = (K(M,2) -, K(B,3)),

where the maps are given by post-composition. Theorem 2.2.2 then gives the desired fibre
sequence, since naturality means that post-composition corresponds to pushout of short exact
sequences. O

Using Corollary 2.1.4, one can show that the long exact sequence of homotopy groups asso-
ciated to the fibre sequence above recovers the usual covariant six-term exact sequence of Ext
groups mentioned at the beginning of this section.

We now give the dual result, which can similarly be shown to produce the contravariant
six-term exact sequence of Ext groups. The construction of the following fibre sequence is more
difficult, because we need to map out of a fibre sequence (not into, as in the previous proposition).

Proposition 2.3.2. Let A Y E 2 B:Ab be a short exact sequence, and M : Ab. Then
SESy(A, M) <= SESy(E, M) &~ SES(B, M)

s a fibre sequence, where the maps are given by pulling back.
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Proof. Applying K(—,2) to the given short exact sequence produces a fibre sequence
K(A4,2) —» K(E,2) — K(B,?2).

Let C be the cofibre of the map K(A,2) — K(E,2), which comes with a natural map C' —
K(B,2). Since (— —« Z) sends cofibre sequences to fibre sequences for any Z, we can apply
(— —« K(M,3)) to obtain a fibre sequence

(K(A,2) =, K(M,3)) + (K(E,2) =« K(M,3)) + (C =, K(M,3)).

We claim that (C' —, K(M,3)) ~ (K(B,2) = K(M,3)), from which the statement follows, as
in the proof of the previous result. Since K(M,3) is a 3-type, it suffices to prove that ||C||s ~
IIK(B,2)||s, and for this it suffices to show that the map C' — K(B,2) is 3-connected, using |38,
Lemma 7.5.14]. The map C' — K(B, 2) is the cogap map associated to the map K(E,2) — K(B,2)
and the base point inclusion 1 — K(B,2). Since K(B,2) is connected, it suffices to check the
connectivity of the fibre of this map over the base point. By [30, Theorem 2.2], this fibre is the
join K(A4,2) * QK(B,2) of the fibres, which is (1+0+-2)-connected, as required. (This fact about
connectivities of joins is proved in [2, Join.v]. It also follows from |9, Corollary 2.32|, since the
join is the suspension of the smash product.) O

2.4 Higher Ext groups The definition of higher Ext groups from [25, Chapter XII| or [43,
pp. 216] can be translated to HoTT and has already been formalized (for R = 7Z, but the
arguments work for a general ring) in [12] along with the contravariant long exact sequence.
An account of the covariant long exact sequence that can be carried out in our setting may
be found in [26, Chapter VIL.5|. We first discuss the definition of Ext’, referring the reader
to [12] for further details. The long exact sequence of Ext groups [12, Theorem 26| makes the
collection {Exty(—, A)}, . into a (large) d-functor, for any A. In Theorem 2.4.12, we show that
this d-functor is universal, as expected.

Definition 2.4.1. Let B and A be R-modules. The type ES:(B, A) is inductively defined to be

Mod (B, A) ifn=0,
ES%(B, A) = SESR(B, A) ifn=1,
> ESE(C,A) x SESg(B,C) ifn=m+1,m>0.
C:Modpg

There is an evident splicing operation ® : ES7(C, A) x SESg(B,C) — ESE(B, A) for any
C : Modpg, which is given by pushing out along a homomorphism when m = 0.

Our splicing operation is written in diagrammatic order, as in [25]. An element of ES%
consists of n short exact sequences which can be spliced in succession from left to right. It
is straightforward to define a more general splicing operation where the right factor can have
arbitrary length. The base point of ES%(B, A) is the zero homomorphism, the base point of
ESL(B, A) is the split short exact sequence, and for n > 2 the base point of ES%(B, A) is
recursively defined to be

0+A—-A—-0—----—0—>B—=>B—=0,

where there are n — 2 intermediate occurrences of 0 (and just a zero map when n = 2).
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The type ES(B, A) doesn’t correctly represent the type of length n exact sequences. For
example, one cannot define Extly(B, A) as the O-truncation of this space. Even more, we would
like to have that ES’;{H(B, A) is a delooping of ES% (B, A) for each n, as in [29], but this does not
hold. However, we can define Extz(B, A) as the set-quotient of ES(B, A) by a certain relation.

Definition 2.4.2. Let n : N. For E, F : ES};(B, A) define a (type-valued) relation inductively
by
E=F ifn=0,1

Fol=g S B ) x (BB = F) ifn>1,
B:Mod g (C,C")

where in the second case we have decomposed E as (C, Ej, E,) and F as (C', F}, F}.).

This relation is clearly reflexive, and one easily shows by induction that it is transitive. We
now define the higher Ext groups as the set-quotient of ES% by this relation.

Definition 2.4.3. Let B and A be R-modules. For n : N, define the set of length-n extensions
of B by A to be

Mod (B, A) itn=0,
Exth(B, A) = { Exth(B, A) ifn=1,
IESH(B, A) /o 7> 1.

The splicing operation respects the relation ~» and thus passes to the quotient Extp. The
same is true for pushouts and pullbacks of length-n exact sequences, which makes Ext; into a
profunctor.

In [25, II1.5], Mac Lane considers “ladders” of homomorphisms between length-n exact se-
quences, and defines two such sequences to be congruent if there exists a zig-zag of such ladders
beween them. He defines Ext’s by quotienting out by this congruence. To connect our definition
of Exts to Mac Lane’s, and for later use, we state the following definition and lemma. For an

element E : ES(B, A), we write A; B E; P, A;y1 for the i-th splice factor, with 1 <i < mn,
Aj=Aand 4,41 = B.

Definition 2.4.4. Let E,E’ : ES}(B,A) for n > 1. A morphism f : E — E’ consists of
a family f; : E; — E} of R-module homomorphisms for 1 < ¢ < n such that f; oip, = g,
PE, = PE!, © fn, and the following outer square commutes for 1 <i < n:

Bty

E; — Ain1 Eit1
|
|

sz i fi+1 lfz!%l
! .

Pg! ¥ g/
/ i / i+1 /
Ei AiJrl Ei+l .

We also define fi+1 to be the displayed restriction of f;11, which makes the inner squares com-
mute.

Lemma 2.4.5. Let n > 1, and let E,E’ : ES}(B,A). The types E~~E' and E — E’ are
logically equivalent.
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Proof. The base case n = 1 is Proposition 2.1.3, so we need only show that the statement holds
for n + 1 supposing it holds for n > 1. Write £ = E;® E, and E' = E|® E..

We first construct a map (E~» E') — (E — FE’) as follows. Given (£, p,q) in the domain,
define f,4+1 to be the composite of the natural morphism E, — S.(FE,) and the morphism
B«(E;) — E] underlying q. By recursing on p we get a morphism E; — [*(E]), which we
compose with the natural morphism *(E]) — E] to get fi..n : E; — Ej. The collection
(fi)1<i<n+1 then defines a morphism E — E’, by construction.

For the other direction, suppose we have a morphism f : E — E’. This gives a morphism
fn+1 : Apy1 — Aj,, using the notation from the previous definition. This morphism will play
the role of 8 from Definition 2.4.2. By Lemma 2.1.8 we have that (fn+1)*ET = E/, and we can
use the induction hypothesis to get an element of Ej ~~ f;‘; 1E;, completing the proof. O

Remark 2.4.6. The previous lemma implies that the set-quotients of ES}(B, A) given by the
relations ‘~~’ and ‘—’ are equivalent. For the formalisation we found it easier to work with the
relation ‘~~’.

More abstractly, one can inductively define Ext%H(B , A) as the set-coequalizer of

> ) Exth(B,C) x Ext'(C',A) ———= > Exti(B,C) x Exty(C, A),

C,0":Modp f:C—C" C:Modp

where one map is given by pushing out along f and the other is given by pulling back along f.
The reader may consult [42, p. 553| for details about this definition.

We define a Baer sum on Ext%JFQ(B7 A)by E4+F = A*V.(E®F), which makes Extgr2 (B,A)
into an abelian group, for all n : N. We now show that the splicing operation is a homomorphism:

Proposition 2.4.7. Let F : Exty(B, A) for somen > 0, and let C be an R-module. The splicing
operation F ©® — : Exth(C, B) — Ext}‘;l(C, A) is a homomorphism.

Proof. For n = 0 the statement is that pushing out an extension along the homomorphism £ is a
homomorphism, which follows from Corollary 2.1.10. Suppose n > 1, and let E, E' : Ext}z(C, B).
An easy consequence of Lemma 2.4.5 is that V*F' = V,(F @ F'), which we use to deduce:

Fo(E+FE) = FOA'V(EDEFE) definition of the Baer sum
= A" (FoV.(EaE")) since pullback acts on the right-hand factor
= A" (V'Fe(Ea E") using the definition of ~»
= A" (V*(F ®F)e(EaE)) using that V*F = V.(F @ F)
= V.(F®F)©(E®E') since pushout acts on the left-hand factor
= A*V*((F@)E) ®(FOE)) since ® and & commute
= (FOE)+ (FoOE). O

A similar argument shows that splicing is a homomorphism in the other variable. We use
these facts to show the following:

Corollary 2.4.8. For each n, Exti(—, —) is an additive functor in each variable.

Proof. This is well-known for n = 0 and was proved for n = 1 in Proposition 2.1.9. We’ll
prove that Ext”“( , A) is additive for n > 1; the other case is similar. First we show that for
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f,9 : Modp(B', B), Extst(f + g, A) = Ext’sT(f, A) + Ext); (g, A) as maps Ext,™ (B, A) —
Ext’};l(B’ ,A). This is a proposition, so we can assume we have a length n + 1 sequence of the
form FF@FE for F : ES(C,A) and E : SESg(B,C). We then have the following equalities in
Ext”H(B’ A):

R )

(f+9)"(FOFE) = Fo(f+9)'E since pullback acts on the right-hand factor
= Fo(ffE+g'E) since Ext}, is additive
= (Fof'E)+ (Fog'E) by Proposition 2.4.7

= f{(FOE)+ ¢ (FOE).

This shows that Ext};t (f +g, A) = Ext}; ! (f, A) + Ext’s" (g, A). It is also straightforward to see
that Ext);"!(—, A) sends the zero map to the zero map. It follows from this that Ext}y™(—, A)
preserves direct sums, since a direct sum B; & By is characterized by having homomorphisms
i : B — B1® By and pi : B1 ® By — By, for k = 1,2 such that pii1 = id, pois = id, p1io = 0,

poi1 = 0 and i1p1 + i9p2 = id, and these equations are preserved by Ext’}fl(—, A). O

Our next goal is to show that, for each R-module A, the collection {Ext%(—, A)}mN has the
structure of a (large) universal §-functor, a concept that we define now.

Definition 2.4.9. A §-functor structure on a collection of additive functors {I™ : Mody —
Ab},.n associates to any short exact sequence A — E — B of R-modules a connecting homo-
morphism 6% : T"(A) — T"(B) for each n : N, such that:

(i) The following long complex is exact:

0— T%B) - TY(E) — T°(A) UN TY(B) = --- = T"(E) — T"(A) %, T (B) - ...

(ii) For any morphism of short exact sequences as on the left below, the square on the right
commutes for every n : N:

5”
A E » B ™A 2= T (B
Lol b = s
671
A—ns F—— B T (A) —Z= T"*(B).

A é-functor? is such a collection equipped with a é-functor structure. Replacing Ab above with
the category Ab’ of large abelian groups®, we obtain the notion of a large §-functor.

If T and S are (large) d-functors, then a morphism f : T — S of d-functors consists
of a collection of natural transformations {f, : T" = S™},.n which respect the connecting
homomorphisms. The (large) §-functor T is universal if the restriction map (T — S) — (T° =
S%) is a bijection, for any (large) d-functor S.

The splicing operation — ® E gives connecting homomorphisms for the family {Ext%:(—, A)},
of contravariant functors, and the long exact sequence from [12, Theorem 26| shows that the
first axiom holds. It is straightforward to verify the second axiom. Thus we have a large J-
functor structure on {Ext;(—, A)},.n. Below, we show that it is universal. This fact is implicit
in Yoneda’s approach to satellites in [42, Chapter 4], though he does not give an explicit proof of

2More precisely, this is the notion of a contravariant, cohomological 6-functor [40, Chapter 2.1].
3For A, B : Ab’, we still write Ab(A, B) for the large abelian group of group homomorphisms.



Ext groups in Homotopy Type Theory 33

universality. (Satellite is another word for (large) universal d-functor.) However, Buchsbaum [7]
constructs satellites which can be shown to be isomorphic to Yoneda’s definition, and Buchsbaum
does prove that his construction produces a universal d-functor (see his Proposition 4.3).

Proposition 2.4.10. Let T be a large 0-functor and let A and B be R-modules. For each
n : N, there is a homomorphism of abelian groups dy : Ext}(B, A) — Ab(T°(A), T"(B)) which
is natural in A and B.

Proof. We proceed by induction on n. Since T is an additive contravariant functor, it gives a
homomorphism
¢+ T§ : Modg(B,A) — Ab(T°(A), T°(B))

which is natural in A and B. We can therefore define dy(¢) == T(g.

For n = 1, consider the map E +— 6% : SESg(B,A) — Ab(T°(A), T*(B)). Since the
codomain is a set, we get our map d; out of the set-truncation Ext}%(B, A). We check that d;
is natural in A; naturality in B is similar. Let f : A — A’ be a homomorphism. Our goal is to
show that the square on the left commutes:

Exth(B, A) —2— Ab(T°(A), T(B)) TO(A) RN TY(B)
J# |z |7 H
Exth(B, ') —2s Ab(TO(A'), T'(B)) T0(A) 2, TV(B) .

Since naturality is a proposition, we may pick an actual short exact sequence A — E — B in the
top left corner. The question then is whether the equation di(f.(F)) = di(F) o TJQ holds. But
this equation underlies the commuting square above on the right, which comes from part (ii) of
the d-functor structure of T" applied to the natural morphism F — f,E of short exact sequences.

Now let n > 1 and assume that we have the natural homomorphism d,,. We proceed to

U

construct dp,+1. First we define a map d/,,, : ESE™ (B, A) — Ab(T°(A4), T"(B)) by
1 (FOE) = 0fody([F]) : T°(A) — T"(B),

where [F] : Extz(C, A) is the equivalence class of F': ES}(C, A). To descend dj, | to a map dp41
on the quotient Ext%“, we need to show that it respects the relation on ESTI‘%H.

Suppose we have a relation F~~ F in ES%H(B,A). Writing £ = (C, Ey, E1) and F =
(C', Fy, F1), the relation gives a map 8 : C — C’, a relation Ey~- 8*(Fp) in ESE(C, A), and a

path f.(E1) = Fy in SESg(B’,C). We need to argue that the outer square below commutes:

To(A) 0 ()
Tn
dn([EoDJ ’ f?l

OF

T°(C) —2— T"*+(B).

The lower-right triangle commutes by condition (ii) of the d-structure of 7', using the map of
short exact sequences Fj — F) associated to the equality (.(E7) = Fj. For the upper-left
triangle, first note that we have d,,([Ep]) = d,([8*(Fo)]). Naturality of d,, gives us further that
dn(B8*[Fo]) = T ody([F0]), from which we conclude that the upper-left triangle commutes. Thus
we get the desired map d,+1 by passing to the quotient.
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It remains to show that d,; is natural and a homomorphism. By Lemma 2.4.11 below, the
latter follows from the former, so we only check naturality. First we check it in the first variable,
solet f: A — A’ be a homomorphism. Since we need to show a proposition, we may consider an
actual element F @ E : ESTIL%H(B , A). Then, since pushouts of longer exact sequences are defined
recursively on the left factor, we have

i1 (fu[FOE) = dy1([fu(F)©E]) = 65 o dy([f.F))
— 3 o dy([F]) o T = duy1([FOE]) o TY,

where the only non-definitional equality uses naturality of d,,.

For naturality of d,, 1 in the second variable, let g : B — B be a homomorphism. Again, we
consider a general element F'® E as above. Since pullback of longer exact sequences are defined
directly on the last splice factor, we have

dnt1(g*[F O E)) = du1([F@g'E]) = 65 o du([F)
= T; M o gpt o dn([F]) = T) o dpa([E® F)),

where the only non-definitional equality comes from part (ii) of the d-functor structure of T
applied to the natural morphism ¢*E — E of short exact sequences. O

The following is Proposition 4.1 in [42], whose proof is easy to translate to our setting.
Abelian categories are defined as usual.

Lemma 2.4.11. Let A be an abelian category, and consider two additive functors S, T : A — Ab.
Suppose na = S(A) — T(A) is a collection of set-maps, natural in A € A. Then each na is a
homomorphism. ]

We come to the main result of this section.
Theorem 2.4.12. The large §-functor {Exth(—, A) by s universal, for any R-module A.

Proof. Let {T™ : Mod%’ — Ab’},.x be a large d-functor. First note that (Ext%(—,A) = T9) ~
T%(A), by the Yoneda lemma. (To be precise, we view Modp as an Ab’-enriched category, and
use the Yoneda lemma.) We will construct a morphism of (large) é-functors Extp(—, A) — T
for any element 7 : TY(A), and show that such morphisms are uniquely determined by their
restriction to the zeroth level.

Let n: N, let  : T°(A), and let B be an R-module. Using d,, from the previous proposition,
define

un(—=) =dn(—,n) : Extp(B,A) — T"(B).

Clearly w, is a group homomorphism. Also, since ug(ida) = Tiq,(n) = 1, up corresponds to 7
under the Yoneda lemma.

To see that {uy,},n is @ morphism of J-functors, we need to show that it respects the con-
necting homomorphisms. To that end, let B — E — B’ be a short exact sequence. We proceed
by induction. For n = 0, we need to show that the following diagram commutes:

Modgr(B,A) —2— T°(B)

i—@E lJOE (1)

Exth(B,A) ——~ TY(B').
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Let f : B — A be an R-module morphism and recall that f ® E = f.(E). By definition, we have
that uy (f«(E)) = 633*( ) (n). Using functoriality of the d-structure of T, the natural map of short
exact sequences from F to f.(F) yields a commuting square

Thus 510“*(E) (n) = 6%(T¢(n)). The right-hand side is precisely 6%(uo(f)), concluding the base
case.
For the inductive step, we need to show that the following square commutes, for n > 1:

Ext®(B,A) —2— T™(B)

|-ox |o (2)

Exth (B, A) 25 T Y(BY).

Whether the square commutes is a proposition, so we may choose a representative F' of an
element in the top left corner. But then the square clearly commutes by the definition of u (and
d).

It remains to show uniqueness of the J-functor morphism u. Specifically, we need to show
that for any d-functor morphism {v, : Exth(—, A) = T"},.ny such that vg = up, we have that
v = u. To show that vy (E) = ui(E) for any E : Exth(B, A), we may assume E is a short exact
sequence. Then we may consider diagram (1), but with the bottom horizontal map being v;.
For this E, the top-left corner is Modr(A, A) and we may chase id4 around the two sides of the
square. Since the square commutes, we get v1(E) = 6%(n), and the right-hand side is u1(E),
by definition. Similarly, for the inductive step we may write a general element of Ext"RH(B, A)
as a splice F'© E and consider diagram (2) with the lower horizontal map being v, 1. (By the
induction hypothesis the top horizontal map is u, = v,.) Chasing F' around the two sides of the
square, we get Up41(F © E) = 65 (un(F)) = unt1(E), as desired. O

2.5 Computing Ext via projective resolutions In this section, we use the long exact
sequence to show that our Ext groups can be computed using projective resolutions. A dual
argument shows the same for injective resolutions. We begin by defining and characterizing
projectivity and injectivity of modules in our setting.

Definition 2.5.1. We say that an R-module P is projective if for all R-modules A and B (in
U), every epimorphism e : Modg(A, B) and every f : Modg(P, B), there merely exists a lift of f

| > connd

g:Mod g (P,A)

through e:

In other words, the post-composition map e, : Modg(P, A) — Modg(P, B) is an epimorphism.
We write IsProjective(P) for this property.

It is clear that R™ is a projective R-module, for any ring R and natural number n. More
generally, if X is a projective set, then the free R-module on X is a projective R-module. In
addition, binary coproducts of projective modules are easily seen to be projective.

The following reproduces a classical characterization of projective modules.
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Proposition 2.5.2. Let P be an R-module. The following are equivalent:
(i) P is projective.
(i) Every epimorphism p : Modgr (A, P) merely splits, i.e., the following holds:

H Z poszidPH.

s:Modg(P,A)

(iii) Exth(P, A) =0 for all R-modules A.
(iv) Exti(P,A) =0 for all R-modules A and n > 1.

Proof. The equivalence between (i) and (¢i) mirrors the classical argument, and the equivalence
of (ii) and (iii) follows from Proposition 2.1.6. Clearly (iv) implies (7ii); we will show the
converse.

Let n > 1. Since we are proving a proposition, we may choose representatives and write
a general element of Extk(B, A) as |(C, F, E)|o. By (iii), we may assume that E is trivial. A
relation 0 ~~ F'© F is then given by the constant map 0 — C and the fact that pushing out and
pulling back along a constant map is trivial (as is easy to show by induction). Further details
can be found in the formalization of [12]. O

Definition 2.5.3. We say that an R-module [ is injective if for all R-modules A and B (in i),
every monomorphism m : Modg(A, B) and every f : Modg(A4, I), there merely exists an extension
of f along m. In other words, the pre-composition map m* : Modg(B,I) — Modg(A4,I) is an
epimorphism. We write IsInjective(I) for this property.

An argument dual to that given in Proposition 2.5.2 characterizes the injectives using mere
splittings or the condition that Extk(B,I) = 0 for all B.

In Section 3.2, we interpret projectivity into a model of HoTT and study its relation to
existing notions of projectivity. We do the same for injectivity in Section 3.3.

Now we turn to computing Ext, from a projective resolution. The argument is standard
homological algebra, and the content is that it holds with the results available to us in homotopy
type theory. In the following, assume we have a projective resolution P, of B. This is equipped
with a surjection pg : Py — B inducing an isomorphism Py/im(P;) = B, and so P surjects onto
By = ker(pg). Continuing inductively, we may factor the projective resolution as follows:

>P2

A Lm/ » g

BO)

where By := B and Bj;1 := ker(p;). Let P_1 := 0 and iy := 0 in the following.

Proposition 2.5.4. The abelian group Exty(B, A) is the nt" cohomology of the cochain complex
Modg(Ps, A) == (--- = Modg(P—1,A) = Modg(P,, A) = Modg(Py41,A) — -+ ).

Proof. Applying Modr(—, A) to (3) gives a diagram

MOdR( n— 1a — MOdR(PnaA — MOdR n+1aA)

\ Al W\) I

MOdR Bn7A MOdR( n+17A)
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which has the chain complex across the top. Since p,41 is an epimorphism, p},, | is a monomor-
phism, and so we get that ker(Modg(P,, A) — Modgr(P,41,A4)) = ker(iy ;). Since (Bpy1 AN

P, By,) is a short exact sequence, the contravariant long exact sequence implies that ker (i), ;)

is Modg (B, A), with p} being the kernel inclusion. Consequently,
H"(Modg(P,, A)) = ker(iy, 1)/ im(Modgr(Py—1,A4)) = Modr(By, A)/im(i,) = cok(iy,).

If n = 0, then this is Modg(Bo, A) = Ext%(B, A), since ig = 0. To understand cok(i},, ;), we use
the full long exact sequence

0 — s Modp(Bp, A) —2 Modg(Py, A) —% Mod (B, A) 3

[» Exth(By, A) 0 Exth(Bpy1, A) D

[» Ext%(Bn, A) 0 Ext%(Bni1, A) — -

where the zeros down the middle column appear due to P, being projective, by Proposition 2.5.2.
It follows from the first connecting homomorphism that cok(i},, ;) = Ext(By, A). The subse-
quent connecting homomorphisms imply that Ext'f%(BnH,A) = Ext’;{rl(Bn,A) for k > 1. Ap-
plying the second equality recursively gives Exth(B,, A) = Ext%“(B,A), for n > 0, and so we
conclude that cok(iy ;) = Exts™(B, A) for n > 0. O

While not formally dual, a similar argument using the covariant long exact sequence lets us
compute Extlsz(B, A) via an injective resolution of A.

Remark 2.5.5. Examining the proof of Proposition 2.5.4 shows that in order to compute
Exty(B, A), one can replace the assumption that each P, is projective by the assumption that
Ext’f%(Pn, A) =0 for all K > 1 and all n > 0. (These are often called the Modg(—, A)-acyclic ob-
jects.) Since we are only requiring this for one A, it does not suffice to ask that Ext}z(Pn, A) =0,
as it did in Proposition 2.5.2. The dual statement holds as well. Since projective and injective
resolutions may not exist in general, this may be useful for some computations.

2.6 Ext of finitely presented modules over (constructive) PIDs In Section 3.2, we
will see examples which demonstrate that higher Ext groups of abelian groups do not necessarily
vanish. The main result of this section is that finitely presented abelian groups B merely have
projective dimension at most 1, and consequently Ext;(B,—) vanishes for n > 1. This is true
more generally for finitely presented modules over principal ideal domains, in the constructive
sense of [23]. When we refer to results of [23] in this section, we mean that these specific
statements and their proofs are straightforward to translate into HoTT. We do not make any
general claims about which parts of [23| can be translated into HoTT.

Before turning to the constructive definition of a PID, we briefly discuss finitely presented
modules.

Definition 2.6.1. Let R be a ring and let A be an R-module.
(i) A is finitely generated if there merely exists an epimorphism R"™ — A, for some n : N.
(ii) A is finitely presented if there merely exists an epimorphism p : R™ — A, for some n : N,
such that the kernel of p is finitely generated.
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If A is finitely presented, then [23, Lemma IV.1.0] implies that any homomorphism R" — A
has finitely generated kernel. Moreover, Proposition 4.2(i) of loc. cit. says that a quotient A/I,
where [ is a finitely generated submodule of A, is also finitely presented. These facts play a role
later in this section.

We now recall the constructive definition of a PID, along with other notions from [23].

Definition 2.6.2. Let R be a commutative ring, and write = | y := (>_,.pax =y) for z,y : R.
(i) R is is an integral domain if every element = : R is either equal to 0 or regular: the
(left) multiplication map y — xy : R — R is a monomorphism (of R-modules).
(ii) A greatest common divisor of z,y : R is an element g such that the following holds:

glwxglyx(H(zlwxzw)%ﬂg)-

z:R

(iii) R is a Bézout ring if for every z,y : R there merely exist u,v : R such that uz + vy is
a greatest common divisor of z and y. The data of such a v and v is called a Bézout
relation for x and y.

(iv) R is a Bézout domain if it is both a Bézout ring and an integral domain.

(v) Risa principal ideal domain (PID) if it is a Bézout domain, and every ascending chain
of finitely generated ideals merely admits two equal consecutive terms.

This definition of PIDs might seem foreign to classically trained mathematicians, so we take

a moment to give some context.
Definition 2.6.3. An ideal I of a ring R is principal if the proposition |3,z Ra = I|| holds.

It is not true in our setting that all ideals of Z are principal. This is for a good reason:
in models, there may be “local” ideals which have no “global” generators. However, all finitely
generated ideals of Z are principal in our setting, and it is straightforward to verify that Z is a
PID in the sense of Definition 2.6.2. Indeed, in Z one can actually compute greatest common
divisors and Bézout relations—they don’t just merely exist. The ascending chain condition
actually computes as well: using the following lemma it reduces to checking equality of principal
ideals, which one can do since Z has decidable equality.

Lemma 2.6.4. Suppose R is a Bézout ring. Any finitely generated ideal of R is principal.

Proof. The existence of Bézout relations means that every ideal of R that is generated by two

elements is principal. The claim follows by recursion. O

The reason for the additional “Noetherianity” condition in our definition of PID is that it
is needed to compute Smith normal forms—see [23, p. 209] for further discussion. We also get
that any finitely presented module over a PID merely splits into a free part and a product of
cyclic modules. Using additivity of Ext}(—, A) (Proposition 2.1.9), projectivity of Z, and that
Ext},(Z/n, A) ~ A/n [12, Corollary 21] we deduce:

Proposition 2.6.5. Let B be a finitely presented abelian group, and write B ~ (@le Z)d;)®Z"
for the decomposition which merely exists by [23, Prop. IV.7.3]. For any abelian group A, we
merely have an isomorphism Ext}(B, A) ~ Hle Ald;. O

From the existence of Smith normal forms over PIDs, we also deduce the following.
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Proposition 2.6.6. Suppose R is a PID. For any R-linear morphism o« : R™ — R™, there
merely exist R-linear automorphisms ¢ and ¢ of respectively R™ and R"™ such that Ya¢ sends
the it basis vector in R™ to a multiple of the it basis vector in R™ for 1 <i < min(m,n).

Proof. Follows from |23, Proposition IV.7.3(i)], whose proof is straightforward to carry out in
HoTT. O

Using the proposition, we can prove the following generalization of Lemma 2.6.4.

Proposition 2.6.7. Let R be a PID, and n : N. A finitely generated submodule of R™ is merely
free.

Proof. Let K be a finitely generated submodule of R" for some n : N. We need to show that there
merely exists some k : N and an isomorphism R¥ ~ K. By our assumption that K is finitely
generated, there merely exists an epimorphism R! — K for some [ : N. Write a : R' - K — R"
for the composite homomorphism. Since we are proving a proposition, we may assume that the
matrix of « is diagonal, in the sense of Proposition 2.6.6. The elements on the diagonal are either
regular or zero, by integrality, and we may consider the standard basis elements e; : R' such that
a(e;); is regular. Thus we get an inclusion R* C R! induced by including these basis elements e;.
Finally, the composite homomorphism p : R¥ — R! — K is necessarily an epimorphism, since we
only threw away basis elements of R' which are sent to 0 by . By construction, the restriction
of @ to R* is an embedding, thus p factors an embedding and must be one itself. It follows that
p is an isomorphism. O

Recall that Exth(B, A) is itself an R-module whenever R is commutative. For a PID R we
deduce from the above that ExtL(B, A) is finitely presented (as an R-module) whenever A and
B are, and moreover that Ext'z(B, —) vanishes for n > 1.

Corollary 2.6.8. Let R be a PID. If B is a finitely presented R-module and A is any R-
module, then Exty(B,A) =0 forn > 1. If A is also finitely presented, then so is the R-module
Exth(B, A).

Proof. Let B be a finitely presented R-module and let A be any R-module. Since we are proving
a proposition, we may assume we have a short exact sequence K — R"™ — B where the kernel
K is finitely generated. The previous proposition lets us moreover assume that K is actually
free of finite rank m. Thus the short exact sequence gives a projective resolution of B, and the
claim for n > 1 immediately follows by computing Ext:(B, A) using this projective resolution
(Proposition 2.5.4). The calculation of Extk(B, A) using this projective resolution yields an exact
sequence
A™ — A" — Exth(B, A) — 0.

Hence, if A is finitely presented, then Ext}%(B , A) is a quotient of the finitely presented module
A" by a finitely generated submodule (the image of A™ — A™), which is finitely presented. [

2.7 Ext of ZG-modules Any construction in homotopy type theory can be carried out “in
context,” meaning that the terms going into a particular construction may themselves depend on
some extraneous variable. In an oco-topos, the corresponding thing is to work in a slice of your
base co-topos. In this section, we work in the context of a pointed, connected type X whose base
point will be denoted by * : X. We will see that abelian groups in the context of X correspond
to modules over the group ring Zm (X), and we will discuss our Ext groups in this setting.
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By “an abelian group in the context of X” we mean a family X — Ab. These form a category
whose morphisms are families of the form [],.y Ab(A;, By) for A,B : X — Ab, i.e., natural
transformations (the naturality squares are automatic since X is just a type). Since Ab is a
1-type, it is equivalent to consider families on the 1-truncation of X. The latter is equivalent to
Bm(X) since X is pointed and connected. To emphasize that no truncation assumptions are
needed, we prefer to work with X in this section.

We begin by constructing the group ring ZG for a group G. For this we use the coproduct
of abelian groups, which has various constructions—see, e.g., [13, 21].

Construction 2.7.1. Let G be a group. We construct the group ring ZG as follows. The
underlying abelian group of ZG is the coproduct @ Z, which is the free abelian group on the
set G. To define a bilinear map ZG ®z ZG — ZG it suffices, by the tensor-hom adjunction and
the universal property of coproducts, to give a function

G — G —7Z4G.

For this we supply the map (g, h) — 14, where 14, is the unit in the gh-summand of @ Z. The
resulting binary operation on ZG is bilinear, by construction. We need to check that 1. : ZG is
a two-sided unit (where e : G is the unit), and that multiplication is associative.

Under the equivalences

(ZG - 7G) ~ ([[(Z — 2G)) ~(G - ZG)
g:G
the identity map on ZG corresponds to g = 15 : G — ZG. Since eg = g for g : G, we see that
le - (=) : ZG — ZG is the identity. Similarly for (—) - L.
For associativity, simply observe that the two maps

() (= =) (==) () : (@C)* > 76
both correspond to the map (g, h, k) — 1gnr : G = G — G — ZG, since G is associative.

Before our next statement, we specify that by an invertible element of a (possible non-
commutative) ring R, we mean an element with a specified two-sided inverse.* The type of
two-sided inverses of a fixed element is a proposition. We write R* for the group of invertible
elements of a ring R.

X

Proposition 2.7.2. The group ring functor Z(—) : Grp — Ring is left adjoint to (—)

Proof. We construct a bijection Ring(ZG, R) ~ Grp(G, R*) which is natural in G and R. By the
universal property of the coproduct, we already have a bijection Modz(ZG, R) ~ (G — R). If
a homomorphism on the left-hand side is in fact a ring homomorphism, then the corresponding
map G — R lands in R*, since ring homomorphisms are required to preserve the unit. Thus
what we need to show is that a map ¢ : G — R* is a group homomorphism if and only if the
induced homomorphism (ZS : ZG — R of abelian groups is a ring homomorphism.

A map ¢ : G — R* is a group homomorphism if and only if the two maps

$(=) - ¢(=), o((=)- (=) : G* = R*

coincide. This happens if and only if the two maps ¢(—)-$(—), gig((—) (=) : ZG* - R coincide.
In other words, ¢ is a group homomorphism if and only if ¢3 is a ring homomorphism. O

4Tt is equivalent to require separate left and right inverses, since one can prove that these must agree (when both
exist).
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Using the previous proposition, we relate the category X — Ab of abelian groups in the
context of X to Zm (X )-modules. Recall that for any abelian group M and ring R, an R-module
structure on M corresponds to a ring homomorphism R — Ab(M, M).

Proposition 2.7.3. We have an equivalence of 1-categories Modz,, (x) =~ (X — Ab).

Proof. Using the previous proposition and uniqueness of deloopings of homomorphisms between
groups, we have the following equivalences of types:

Modzr (x) ~ Y Ring(Zmi(X),Ab(M, M))
M:Ab

~ Y Grp(m(X), Autz (M)
M:Ab

> (Bmi(X) =« (Ab, M))
M:Ab
~ (Bm(X) — Ab) ~ (X — Ab),

1

where in the second-last line (Ab, M) is the type Ab equipped with the base point M, and the
last line uses that B (X) is the 1-truncation of X. It is straightforward to make this association
into a functor which is an equivalence of categories. O

Given a family A : X — Ab, the abelian group underlying the corresponding Zm; (X )-module
is A,, the evaluation of A at the base point * : X. Accordingly, we may view A, either as an
abelian group or as a Zm (X )-module, depending on context.

An example of particular interest to us is the following.

Proposition 2.7.4. For B, A: X — Ab, the abelian group Exty (B, Ay) is naturally a Zmi(X)-
module.

Proof. Apply Proposition 2.7.3 to the family = — Exty (B, Az). O

When n = 1, we can understand the action via the following lift to SESz. For any = : X,
consider the type of short exact sequences from A, to B,:

x+— SESz(B;, Az) « X — U.

This family defines a QX-action on SESz(By, A.), and one can check that the action of an
element g : QX on a short exact sequence F is given by

1

g E= (A 22 B, 5 B,), (4)

where we have used the action of g on A, and B,. Lemma 2.1.11 gives an alternative description in
terms of pullbacks and pushouts. On components, this gives the action of 71 (X) on Ext%(B*, Ay)
from Proposition 2.7.4.

For n > 1, one gets a 71 (X)-action on Exty (B, A,) which is similar to Eq. (4), but with a
(representative of a) longer extension in place of a short exact sequence.

The following theorem identifies the type of fixed points of the action (4).

Theorem 2.7.5. For any B, A : X — Ab, we have an equivalence

T SES2(B:, As) ~ SESzr,(x)(Bs, As).
x: X
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Proof. An element of [[ ..y SESz(B,, Az) is easily seen to consist of a family £ : X — Ab along
with two sections i : [],. Monoz(Ag, E;) and p @ [],.x Epiz(Es, By) such that the proposi-
tion [],.y IsExact(ig,ps) holds. Under Proposition 2.7.3, i corresponds to a monomorphism
Ay — E, of Zmi(X)-modules and p corresponds to an epimorphism F, — B,. The proposition
[ L..x IsExact(iz,p,) holds if and only if it holds at the base point of X, since X is connected.
In other words, it holds if and only if A, — E, — B, is an exact sequence of abelian groups
(and hence of Zmi(X)-modules). O

Corollary 2.7.6. For any M in the abelian category X — Ab, we have a group isomorphism
HY (X; M) ~ Extg, x(Z,M,),

where the left-hand side is the cohomology of X with local coefficients in M, and Z on the right
has trivial Zm (X)-action.

Proof. Since Z is projective as an abelian group, by Proposition 2.5.2 we have that SESz(Z, M,,)
is connected, for any x : X. By Corollary 2.1.4, its loop space is Ab(Z, M,) ~ M,. It follows
that we have an equivalence SESz(Z, M) ~ K(M,, 1) which is natural in M,. Thus we get an
equivalence

[[ KO, 1) ~ []SESz(Z, M)

z: X z: X
which is natural in M. The set-truncation of the left-hand side is by definition H'(X; M)
(see [34]), and the set-truncation of the right-hand side is Extém( x)(Z, M) by the previous theo-
rem. After truncating the equivalence above, we get a natural bijection which is an isomorphism
by Lemma 2.4.11. O

3. Ext in an oco-topos

Statements in HoT'T can be interpreted into an co-topos [11, 10, 19, 22, 32]. In this section, we
study the interpretation of the constructions and results from Section 2. Our precise setup is
explained in the section on foundations just below.

Results about rings and modules in HoTT apply to ring or module objects in X, which we
stress are O-truncated. Accordingly, these objects live in the sub-oo-category of O-truncated
objects in X, which is a 1-topos [24, Theorem 6.4.1.5]. In particular, if R is a ring object in
X, then the category of R-modules is equivalent to a category of ordinary sheaves of modules.
Such categories have been extensively studied, and the reader may for example refer to |20,
Chapter 18| for background.

In Section 3.1, we work out the interpretation SESr(B, A) of the type SESg(B, A) of short
exact sequences, given a ring object R and two R-module objects A and B in X. (Our font
usage is explained below.) The object SESgr(B, A) is shown to classify short exact sequences
A — E — B of R-modules in X (Proposition 3.1.3). From this we deduce that the set of path
components of the space of global points of this object recovers the usual ezternal Yoneda Ext
groups (Corollary 3.1.4).

Our next objective is to understand the interpretation Ext'; (B, A) of our Ext groups, which
are abelian group objects in X. In special cases (Proposition 3.2.7 and Corollary 3.3.16), we show
that the global points of Ext’;(B, A) recover the ordinary Ext groups. But this fails in general.
Indeed, we give examples showing that either one can vanish without the other one vanishing
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(Examples 3.4.8, 3.4.9 and 3.2.12). However, we show that in many cases Ext; (B, A) recovers
a known construction. In any 1-topos, one can define sheaf Ext groups (Definition 3.3.13) by
taking the right derived functors of the internal hom of modules, using the existence of enough
(external) injectives. (The name “sheaf” Ext is used because one often works in a category of
sheaves; the name “local” Ext is also used.) We can extend this to an oo-topos X, by considering
sheaf Ext in the 1-topos of O-truncated objects in X. When sets cover in X (see Definition 3.3.6),
we show that Exth(B, A) agrees with sheaf Ext (Theorem 3.3.14). We do this by showing that
for such X, injectivity of modules in HoTT corresponds to internal injectivity (Corollary 3.3.12).
Since external injectives are always internally injective, it follows that our Ext groups can also
be computed using externally injective resolutions, and therefore that they agree with sheaf
Ext. A consequence of this is that in this setting our Ext groups only depend on the 1-topos of
O-truncated objects in X (Corollary 3.3.18).

We also study various notions of projectivity in Section 3.2, and provide a computation of
our Ext groups using a resolution which is projective in the sense of HoTT in Proposition 3.2.9.
This computation demonstrates, in particular, that our higher Ext groups need not vanish over
the ring object Z. Lastly, Section 3.4 contains a detailed study of our Ext groups over a pointed,
connected type X and over a group ring Z(G. The considerations in this final section are meant
to illustrate and exemplify the theory developed throughout Section 3, in addition to being of
interest in their own right.

Foundations We explain our setup for interpreting HoT'T into the co-topos X. We assume an
inaccessible cardinal k for the entirety of Section 3. Formally, the interpretation of HoTT lands
in a type-theoretic model topos M presenting X, which always exists [32]. The model topos
M admits a univalent universe which classifies relatively x-presentable fibrations. This universe
allows us to interpret HoT'T with a single universe. Constructions in M present constructions in
X, and we are interested in studying the fruits of our labour in the latter. We emphasize that
our constructions can be built from truncations and pushouts, which are modelled in co-toposes;
no other HITs are needed. These constructions are all uniquely determined up to equivalence by
their universal properties coming from the interpretation of the various type constructors, and
this obviates the need to explicitly work with M.

Moreover, it is shown in [37] that the univalent universe in M presents an object classifier
u : U — U for relatively s-compact morphisms in X [24, Section 6.1.6]. This means that the
mapping space X(X,U) is naturally equivalent to the space (X/"X)~ of relatively k-compact
maps into X in X, and lets us precisely determine the objects and structures in X which are
classified by the universes (of types, and of modules) that we consider. We write X, for the
sub-oo-category of k-compact objects in X.

Our results from the previous section concern truncated objects such as modules, and types of
short exact sequences. The truncation level makes the interpretation particularly straightforward,
and there is not much higher coherence to manage. For this reason—and for reasons of space
and interest—we allow ourselves to state and work with the result of our interpretation directly
in X and not make any further mention of M.

Notation and conventions We write X for a fixed oo-topos throughout this section. By
“topos” we mean Grothendieck topos unless otherwise specified. Fonts are used to distinguish
types in HoTT, the objects obtained by interpretation in X, and the classical counterparts. For
example, Ext% (B, A) will continue to mean the Ext group in HoTT constructed in Section 2.
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Its interpretation Ext'y(B, A) into X is written in typewriter font. The classical external Ext
groups are written in normal font Ext’ (B, A), whereas the classical sheaf Ext groups are denoted
with an underline Ext’s (B, A). In general, we use underlines to denote traditional constructions
internal to X, such as the internal hom Mod (A, B) between two R-module objects A and B. The
(external) set of R-module homomorphisms is Modgr(A, B), and we use that this is equivalent
to the global points I'Modpr(A, B) of the internal hom.

The 1-topos of O-truncated objects in X is denoted 7<¢(X), and we write Sety for 7<o(Xy).
Note that the inclusion 7<o(X) — X respects internal homs, products, effective epimorphisms,
as well as other structures and properties. We allow ourselves to fluently pass such structures
and properties between 7<(X) and X. We write Abg for the (abelian) category of abelian group
objects in a (possibly elementary) 1-topos €, and define Aby = Ab,_ (x.). The oco-topos of
spaces is denoted 8, and we simply write Ab for Abg, the category of ordinary (k-compact)
abelian groups. Our abelian group and module objects in X are always be assumed to be k-
compact.

Base points are denoted by *, unless another name is given.

3.1 The object of short exact sequences Let R be a ring object in X, i.e., a ring object in
the 1-topos Sety, and write Modp for the category of (k-compact) R-modules. Statements from
HoTT about rings can be interpreted into X to give statements about R, and statements about
R-modules in HoTT interpret to statements about R-module objects in X. In particular, [13,
Theorem 4.3.4] shows that the category of modules (in U) over R interprets to an internal
category Modgr which represents the presheaf of 1-categories

X — MOd(XXR) ;X — Cat,

where X X R is the ring object in X/X obtained by pulling back. (Here, by “internal category”
we mean the Rezk (1,1)-objects of [13, Def. 4.1.1] which represent presheaves of 1-categories on
X, as explained in loc. cit.) Thus a family of modules X — Modp in X corresponds precisely to
a (relatively k-compact) (X x R)-module in the slice X/ X.

For any two R-modules A and B in X, we interpret the type SESr(B, A) into X to get an
object SESr(B, A) of short exact sequences. We start by describing this and the interpretation
of our Ext groups, for spaces:

Proposition 3.1.1. Let R be a ring object in 8 (i.e., an ordinary ring), and let B and A be
R-modules.
(i) The interpretation of SESr(B, A) into 8§ is equivalent to the ordinary (1-truncated) space
of short exact sequences from A to B;

(1) The interpretation of Ext}(B,A) into 8 is isomorphic to the ordinary Ext group
Ext'y(B, A).

In spaces, we will also use a slight generalization of this statement where the category of
R-modules is replaced by an arbitrary abelian (univalent) category.

Proof. Using that Modp classifies R-modules [13], it is straightforward to check that the inter-
pretation of SESp(B, A) is equivalent to the usual space SESg(B, A) of short exact sequences.

It follows that the interpretation of our Ext}%(B , A) recovers the ordinary Yoneda Ext group
Exth(B, A).
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For n > 1, the interpretation Ext’, (B, A) into spaces recovers Yoneda’s definition of the group
Exth(B, A) as a quotient of the space of length-n exact sequences, which is well-known to give
the usual Ext groups defined using resolutions. O

Our present goal is to relate the object SESg(B, A) in X to the external space SESg(B, A),
for ring and module objects in X. To do this, we require a lemma which characterizes the
interpretation of the objects of epimorphisms and monomorphisms from HoTT.

Lemma 3.1.2. Let A and B be R-modules in X. The object Epipr(B,A) resulting from in-
terpretation classifies R-module epimorphisms B — A in X. Likewise, the object Monor(B, A)
classifies R-module monomorphisms.

Proof. Let us first recall that the internal hom Mod (B, A) classifies R-module homomorphisms,
meaning that we have natural equivalences

X(X,Modg(B,A)) ~ Modxyxr)(X x B,X x A)

for X € X. We will restrict these equivalences to epimorphisms and monomorphisms to obtain
our statement.

Under this equivalence, a map f : X — Epip(B,A) corresponds to an (X xR)-module
homomorphism [/ : X x B —+ X x A in X/X that satisfies the interpretation of being (—1)-
connected from HoTT. Since (—1)-connected maps in HoTT interpret to (—1)-connected maps in
an oo-topos, we have that f’is a (—1)-connected map over X. This means that f’ is an (effective)
epimorphism between O-truncated objects, hence also between module objects, as desired.

The statement for Monog(B, A) is shown similarly, but using that (—1)-truncated maps in
HoTT correspond to (—1)-truncated maps in X, which are monomorphisms between 0-truncated
objects. O

We use this lemma in the proof of the following proposition, which says that the object of
short exact sequences from HoT'T classifies short exact sequences in X. Recall that base change
functors are exact and therefore preserve ring and module objects, as well as exact sequences of
the latter. This means that any morphism f: X — Y in X induces a map

f* : SES(YXR)(Y X B,Y X A) — SES(XXR)(X X B,X X A)
by base change, for any two R-modules A and B in X.

Proposition 3.1.3. Let A and B be R-modules in X.. The object SESg(B, A) represents the
presheaf
X'—)SES(XXR)(XXB,XXA) : X°P — 8.

In particular, the (1-truncated) space SESr(B, A) is equivalent to the global points of the object
SESR(B, A).

Proof. Let X € X. Our goal is to produce equivalences of spaces
X(X,SESR(B,A)) ~ SES(xxp)(X x B, X x A)

which are natural in X € X. Using the adjunction ¥x 4 X x (—) and base-change stability of
interpretation, we may replace the left-hand side above via the following natural equivalences:

X(X,SESg(B,A)) ~ X/X(idx,X x SESg(B,A)) ~ X/X(idx,SES(xxp)(X x B,X x A)).
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The rightmost space is the global points of the object SES(x R)(X x B, X x A). It therefore
suffices to consider the case X = 1, and to construct, for any co-topos X, an equivalence

X(1,SESR(B, A)) ~ SESg(B,A)

that is pullback-stable along any Y — 1 (which implies naturality of the required equivalence).

The right-hand side above is the domain of a (—1)-truncated map into the (1-truncated)
space G consisting of k-compact R-modules E equipped with a monomorphism i : A — F and
an epimorphism p : E — B. The object SESp(B, A) is the domain of a (—1)-truncated map
into the corresponding object G’ of such things in X. By Proposition 3.1.1(i) applied to the
abelian category Modpg, the previous lemma, and [13, Theorem 4.3.4], we have a pullback-stable
equivalence between the space of global points of G’ and G. It follows that both sides of the
equivalence above are naturally fibred over G, and we can therefore obtain the desired equivalence
from a fibrewise bi-implication (which yields an equivalence since the maps are (—1)-truncated).
Note that pullback-stability of the equivalence X(1,G’) ~ G will automatically imply pullback-
stability of this equivalence between (—1)-truncated maps. It therefore remains to check that
the internal proposition IsExact(7,p) holds if and only i and p define an exact complex in the
usual sense.

The proposition IsExact(i,p) consists of a witness that the internally induced map A —
ker(p) is (—1)-connected. The module ker(p) is clearly equivalent to the externally defined
kernel ker(p), both being given by the fibre over the global point 0 : 1 — B. Under this
equivalence, the aforementioned witness implies that the induced map A — ker(p) is surjective
(i.e., (—1)-connected), and vice-versa.

In conclusion, X(l, SESR(B, A)) and SESR(B, A) are naturally fibrewise equivalent as spaces
over G. This yields a pullback-stable equivalence on total spaces, as desired. O

Recall that mo SESgr(B, A) is the usual definition of the Yoneda Ext groups (see, e.g., [25]),
which recover the Ext groups defined in terms of resolutions. Thus we have the following:

Corollary 3.1.4. We have a natural isomorphism o(X(1,SESr(B, A))) ~ Exty(B, A) of ordi-
nary abelian groups, for any R-modules A and B in Xy. O

Since we do not have a good description of the (untruncated) type of length-n exact sequences,
we do not have a corresponding statement for the higher Ext groups.

Note that taking global points and taking components do not commute, and it is important
for the above result that we take global points before taking components. If we reverse the order,
we get the claim that X(1,Ext}h(B, A)) ~ Extp(B, A). We show in Examples 3.4.8 and 3.4.9
that this is false in general. However, we will see in Proposition 3.2.7 and Corollary 3.3.16 that
there are situations in which the global points of Ext%; agree with Ext for all n.

3.2 Comparing various notions of projectivity It is well-known that ordinary Ext groups
of (say) modules can be computed using projective resolutions, whenever one is at hand. In Sec-
tion 2.5 we showed that the same thing holds for the Ext groups we defined in HoTT. Accordingly,
we can compute our internal Ext groups in X using resolutions which consist of modules that
satisfy the interpretation of the predicate IsProjective from Definition 2.5.1. An example of
such a computation is given in Proposition 3.2.9. In addition, we compare internal projectivity
to ordinary (external) projectivity. There are no implications either way in general, which we
demonstrate through Examples 3.4.8 and 3.2.12.
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Definition 3.2.1. Let R be a ring object in X.

(i) An R-module P is (externally) projective if for every epimorphism e : A — B in
Modg, the map e, : Modg(P, A) — Modg(P, B) of ordinary sets (or abelian groups) is an
epimorphism;

(ii) An R-module P is internally projective if for every epimorphism e : A — B in Modg,
the map e, : Modp(P, A) — Modpi(P, B) in Aby is an epimorphism;

(iii) An R-module P is HoTT-projective if the interpretation of IsProjective(P) from Defini-
tion 2.5.1 holds.

The external and internal notions are the usual ones which pertain to modules in a 1-topos,
which for us is the 1-topos 7<o(X). However, in an oo-topos we also have the third notion of
HoTT-projectivity resulting from interpretation. We mention, to be concrete, that if X is the
sheaf co-topos on some 1-site, then 7<¢(X) is the category of ordinary set-valued sheaves on the
same site. In this situation, ring and module objects are ordinary sheaves of rings and modules.

In general, when we say that the interpretation of a statement in HoTT “holds” we mean
that the resulting object of X has a global point. If the statement is a proposition, then this
means that the object is terminal. Our first objective is to make a useful reformulation of
HoTT-projectivity.

Proposition 3.2.2. An R-module P is HoTT-projective if and only if the (X X R)-module X x P
is internally projective in Mod x gy for all X € X.

Proof. Let P be an R-module in X. According to Definition 2.5.1, we have

IsProjective(P) = H H H IsEpi(e. : Mod (P, A) — Modg(P, B)).
A:Modg B:Modp, e:Epig(A,B)
Interpreting IsProjective(P), we get an object of X. It has a global point if and only if the
projection
Q : Z Z IsEpi(es) —> Z Epip(A, B)
A,B:Modr e:Epig(A,B) A,B:Mod

admits a section. This map admits a section if and only if for every map

f:X— ) Epig(4,B)
A,B:Modg
there is a section of the pullback f*(Q) € X/X, since we can take f to be the identity map.
Such a map f is equivalent to the data of two (X xR)-modules A and B over X along with
an epimorphism e : A — B. Here we have used [13, Theorem 4.3.4] which says that Modp
classifies module objects, and Lemma 3.1.2. By definition, we have that f*(Q)) = IsEpi(e.),
where ex : Mod xg)(X X P, A) — Mod y,p) (X x P,B) is the post-composition map. This
proposition f*(Q) holds if and only if e, is an epimorphism.

In summary, the statement IsProjective(P) holds if and only if for every X € X, all
(X xR)-modules A and B, and every R-module epimorphism e : A — B, the aforementioned
post-composition map e, is an epimorphism. But this is exactly the statement that X x P is an
internally projective (X x R)-module for every X € X. O

Clearly, HoTT-projectivity always implies internal projectivity. The converse holds for oco-
toposes in which internal projectivity of modules is stable by base change. We do not know
whether this is always true®, but it is true for spaces, as we show in Proposition 3.4.7.

"David Wirn has now shown that internal projectivity does not imply HoT'T-projectivity; see [39, Theorem 7].
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Next we show that certain free modules are HoTT-projective. Our proof uses the following
lemma, due to Alex Simpson for internal projectivity of objects in a I-topos 35|, written up on
the nLab®. (See also [39, Lemma 11].) The definition of internal projectivity of objects is the
same as for modules, but using the internal hom of objects. It is straightforward to check that
Simpson’s proof goes through for objects of an oco-topos as well, providing us with:

Lemma 3.2.3. Let P € X be an internally projective object. Then X x P is an internally
projective object in X/ X for all X € X. O

Combining Lemma 3.2.3 with an argument similar to that of Proposition 3.2.2, we deduce:

Proposition 3.2.4. An object P € X is internally projective if and only if it satisfies the inter-
pretation of being a projective object in HoT'T. L]

Given a O-truncated object S in X, we can form the free R-module R(S) on this object, for
any ring object R. This free R-module is the interpretation of the free R-module on a set in
HoTT.

Proposition 3.2.5. Let R be a ring object in X, and let P be a 0-truncated, internally projective
object. The free R-module R(P) on P is HoTT-projective.

Proof. By Proposition 3.2.4, P satisfies the interpretation of being a projective set in HoTT.
The free R-module R(P) on a projective set is projective in HoTT, so we are done. O

We use this proposition to compute an example of our Ext groups Ext; in Proposition 3.2.9.
Before turning to this example, we observe that internal projectivity (and thus HoTT-projecti-
vity) implies external projectivity in certain situations. This has some interesting consequences.

Proposition 3.2.6. Let & be a (possibly elementary) 1-topos, equipped with a ring object R.
If the global points functor I' : € — Set preserves epimorphisms, then internal projectivity of
R-modules implies external projectivity.

Proof. The statement easily follows by identifying the external hom of R-modules as the global
points of the corresponding internal hom, and then using the assumption on I'. O

The previous proposition applies, for example, to any topos of presheaves on a category with
a terminal object 1. In that case I' is represented by evaluation at 1, which respects both limits
and colimits of presheaves.

Proposition 3.2.7. Let R be a ring object in X, and consider two R-modules B and A. Suppose
that T' : Sety — Set preserves epimorphisms. If B has a HoTT-projective resolution P,, then we
get an isomorphism T'Ext} (B, A) ~ Exth(B,A).

One can check that our assumption on I" holds if and only if the induced functor I' : Aby — Ab
is exact, and it is this latter condition that we use in the proof.

Proof. By the interpretation of Proposition 2.5.4, we can compute Ext'; (B, A) using the HoTT-
projective resolution P,. Specifically, taking internal homs we get a complex

-+ = Modg(Pn-1,A) = Modg(FPn, A) = Modg(Prt1,4) = -+ (5)

6See internally projective object (rev. 13) on the nLab.
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of abelian groups in X, and we have isomorphisms H"(P,; A) ~ Ext';(B, A) where the left-hand
side is the cohomology of the above complex in Abxy.

Now, by our assumption on I', the previous proposition tells us that P, is an externally
projective resolution of B (since HoTT-projective always implies internally projective). Thus we
may also compute Ext’; (B, A) using P,, which amounts to taking the cohomology (in Ab) of the
global points of the complex (5) above. Since I' : Aby — Ab is exact, it commutes with taking
cohomology, and we therefore obtain the desired isomorphism. O

In the presence of enough HoTT-projectives, we deduce:

Corollary 3.2.8. Let R be a ring object in X, and suppose that Modgr has enough HoTT-
projectives. If I' : Setyy — Set preserves epimorphisms, then we have natural isomorphisms

I'Ext’z(B,A) ~ Exth(B,A)
for any two R-modules B and A. O

We now turn to our computation of a non-trivial EXt% in the Sierpinski co-topos X using a
HoTT-projective resolution. Since X is the oo-topos of presheaves on the arrow category 0 — 1,
an abelian group in X consists of a homomorphism Ay < A; between two ordinary abelian
groups. We write y for the Yoneda embedding.

Note that y(0) is an internally projective object in this co-topos, since it represents the functor
sending a presheaf Fy < F} to the presheaf Fj M Fy, which preserves epimorphisms. Accord-
ingly, the corresponding free abelian group Zy(0) is HoTT-projective, by Proposition 3.2.5.

Proposition 3.2.9. Consider the abelian group B = (0 < Z/2) in the Sierpinski co-topos. We
have
Ext%(B,Zy(0)) ~ B.

Proof. We will compute this internal Ext group using a HoTT-projective resolution of B, as jus-
tified by the interpretation of Proposition 2.5.4. Drawing objects of X vertically and morphisms
horizontally, the following is such a resolution Py (B):

2

0 > Z 77— 7/2
| U |
78N 707 2,7 0.

Here, Py(B) = Zy(1) is the integer object in X, which is always HoTT-projective; Po(B) = Zy(0)
is HoTT-projective by the discussion just above; and P;(B) is Zy(0) @ Zy(1), a direct sum of
HoTT-projectives, which is HoTT-projective. Thus Ext2(B,Zy(0)) ~ H?(P.(B),Zy(0)). Since
Zy(1) is the integer object, we have Mody(Zy(1),Zy(0)) ~ Zy(0), and one can check that
Mody(Zy(0),Zy(0)) ~ Zy(1). Applying Mody(—,Zy(0)) to the first three columns above gives
the cochain complex

72 7 0

| o |

7 21 707 (1,2) 7

The desired group H?(P.(B),Zy(0)) is the cokernel of the leftmost map, which is B = (0 +
7]2). O
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Remark 3.2.10. The category (0 — 1) has a terminal object (the object 1), which implies that the
global points functor of the Sierpiriski co-topos preserves epimorphisms between abelian group
objects. Specifically, the global points of an object Ag +— A; is simply A;. From Proposition 3.2.7
and the computation in the previous proposition, we deduce that ExtZ(B,Zy(0)) ~ Z/2 for the
external Ext group.

Remark 3.2.11. The first part of the resolution above gives rise to a short exact sequence

7 —257 — 7/2
I
Z——7——0.

The object in the centre is clearly not the product of the kernel and the cokernel, even ignoring
the group structures. In the Sierpiniski co-topos, an object is merely inhabited if and only if it
is inhabited, so it follows that it does not merely hold that the central object is the product of
the kernel and the cokernel. So while it is true that the type of length-1 extensions is essentially
small, this cannot be proved by assuming that the underlying type of the middle object is the
product of the other two types. (See Remark 2.2.4 for context.)

We conclude this section by studying the relation between internal and external projectivity in
general. Example 3.4.8 gives an internally projective module which is not externally projective.
Here we give an example of an externally projective abelian group that fails to be internally
projective, which is an additive version of an example due to Todd Trimble.”

Consider the poset € := Nx {a,b}, where a and b are greater than all n € N,

a

\b

0—1—2—...

and let X be the oco-topos of presheaves on €. As above, we write y : € — X for the Yoneda
embedding. The functor Z(—) : Setxy — Mody, constructs the free abelian group on a O-truncated
object in X. In particular, we may depict Zy(a) as follows:

N
I
N
I
N
I

J\

0

The integer object Z over € is simply the constant presheaf on the ordinary integers.

Ezample 3.2.12. Zy(a) is externally projective but not internally projective in Modz. It fol-
lows from Proposition 2.5.2 that there exists an A in Modz so that Ext}(Zy(a), A) = 0 and
Ext}(Zy(a),A) # 0.

Proof. Tt is immediate that Zy(a) is externally projective, since it represents evaluation at a,
which preserves epimorphisms of presheaves of modules. To show that Zy(a) is not internally
projective, we construct an epimorphism o : F' — G that isn’t preserved by Mod,(Zy(a), —).

"See presentation axiom (rev. 46) on the nLab.
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Let F' : Mody be defined as follows, with indexwise inclusions:
— '
DenZ @7212 — ®n22Z o \
Define G(n) == Z for n € N and G(a) := 0 =: G(b), with all maps between natural numbers
inducing identity maps. Then we have an epimorphism o : F' — G given by addition at n € N

0.

and identities (zero maps) at a and b. However Modz(G, F') = 0 since any such homomorphism
must factor through lim,, '(n) = 0 on the N-part of € (and is necessarily 0 on a and b).

Using the tensor-hom (see, e.g., [36, Section 17.22]) and free-forgetful adjunctions, one can
check that G = Z(y(a) x y(b)) and Zy(a) ®z Zy(b) satisfy the same universal property and are
therefore naturally isomorphic. Here ®z is the tensor product of presheaves of modules, which
is pointwise (see, e.g., Section 6.6 of loc. cit.). Using the tensor-hom adjunction again, we obtain
isomorphisms

Mody(Zy(a), F)(b) ~ Modz(Zy(a) @z Zy(b),F) ~ Modz(G,F) ~ 0.

On the other hand, Mod,(Zy(a),G)(b) = Modz(Zy(a) ®z Zy(b),G) = Modz(G,G) contains
at least two elements: 0 and idg. This means that o, : Mod,(Zy(a), F) — Mod,(Zy(a),G)
cannot be an epimorphism, since it isn’t one at b. O

3.3 Internal injectivity and sheaf Ext The goal of this section is to show that in certain oo-
toposes, the interpretation of our Ext groups from HoT'T recover the sheaf Ext groups arising in
algebraic geometry. Since sheaf Ext groups are defined using external injective resolutions (see
Definition 3.3.13), we will need to understand how these compare to the notion of injectivity
coming from HoTT. We will make this comparison by going through a third notion of injectivity,
namely internal injectivity.

Definition 3.3.1. Let R be a ring object in X,.
(i) An R-module [ is (externally) injective if for every R-module monomorphism m : A —
B, the homomorphism m* : Modg(B, I) — Modg(A,I) in Ab is an epimorphism;
(i) An R-module [ is internally injective if for every R-module monomorphism m : A — B,
the homomorphism m* : Modp (B, I) — Mody(A, I) in Aby is an epimorphism;
(ili)) An R-module I is HoTT-injective if it satisfies the interpretation of the proposition
Isinjective(I) from Definition 2.5.3 in X.

As in the projective case, injectivity and internal injectivity are the familiar notions from
the 1-topos Sety. In surprising contrast to the projective case we considered above, external
injectivity always implies internal injectivity in a 1-topos. This theorem is due to [17] for abelian
groups and [3, Theorem 3.8| for modules. The converse holds in any localic 1-topos (as Blech-
schmidt shows), however not every internally injective module is externally injective in general.
For example, in [15, pp. 259 it is shown that the Z/2-module Q/Z with trivial action is not
externally injective, though it is internally injective (as an abelian group over BZ/2) by [16,
Proposition 1.2(i)] (see also Proposition 3.4.5 below).

Remark 3.3.2. Let R be a ring object in X,. The category Modpg is equivalent to a cate-
gory of modules in a 1-topos [24, Theorem 6.4.1.5|, and is therefore Grothendieck abelian |20,
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Theorem 18.1.6]. Consequently, it has enough external injectives. Since external injective are
internally injective by [3, Theorem 3.8|, there are also enough internal injectives in Modg.

To relate HoTT-injectivity to internal injectivity we proceed as we did in Section 3.2 for
projectivity. A proof similar to the one of Proposition 3.2.2 gives us the following:

Proposition 3.3.3. An R-module I in X is HoTT-injective if and only if the (X X R)-module
X x I is internally injective in X/*X for all X € X. O

Clearly, every HoTT-injective module is internally injective. If we could show that internal
injectivity is stable by base change in an co-topos, then the two notions would coincide. However,
we do not know whether internal injectivity is stable by base change in a general oo-topos. We
will show below that it holds in certain situations.

In [17], Harting showed that internal injectivity is stable by base change for abelian groups
in any elementary 1-topos. The same holds for modules (see the discussion immediately after |3,
Proposition 3.7]). It follows that the same is true in an oo-topos for base change by a 0-truncated
object:

Lemma 3.3.4. Let X € X be O-truncated. Base change X x (—): Modr — Modx gy over X
preserves internal injectivity. O

A key fact in the converse direction is that internal injectivity descends along effective epimor-
phisms. This is essentially a corollary of the fact that base change along effective epimorphisms
reflects effective epimorphisms (more generally, connected maps) [24, Proposition 6.5.1.16(6)].

Lemma 3.3.5. Let V be a (—1)-connected object of X, and let I be an R-module. If V x I is
internally injective as a (V xR)-module over V, then I is internally injective.

The same result holds for internal projectivity as well, with only minor changes to the proof.

Proof. Suppose V' x I is internally injective as a (V' xR)-module, and let ¢ : A — B be a
monomorphism of R-modules. Using that base change preserves internal homs, consider the
following diagram:

Mody gy(V x B,V x I) —— Modg(B,I)

l(vm)* - lz

MOd(VXR)(V X A,V X I) E— MOdR(A,I)
| |

%4 » 1.

Here the two-headed arrows signify effective epimorphisms (which are pullback-stable). By as-
sumption, V' x I is internally injective, so (V' x i)* is an effective epimorphism (since monomor-
phisms are stable by base change). Thus i* factors an effective epimorphism, and must therefore
be one itself. We conclude that [ is internally injective, as desired. O

One can also prove the previous lemma by using that pullback along an effective epimorphism
is conservative [24, Lemma 6.2.3.16]. We apply this to the map IsEpi(i*) — 1, which is an
equivalence precisely when ¢* is an epimorphism.

We now introduce conditions on X which will imply that internal injectivity is stable by base
change.



Ext groups in Homotopy Type Theory 53

Definition 3.3.6. Let n > —1 be a truncation level. An object X € X is covered by an
n-type if there exists an n-type V along with an effective epimorphism V — X. If all objects
of X are covered by n-types, then n-types cover in X. When n = 0, we say that sets cover.

Sets cover in any oo-topos of co-sheaves on a 1-category, since any such sheaf can be covered
by a coproduct of representables.

Note that the condition that n-types cover in X is not the interpretation of the corresponding
concept from HoTT. (See [38, Exercise 7.9], [8, Definition 5.2] and the nLab®.) The HoTT notion
only requires that V' and the effective epimorphism merely exist. On the other hand, it requires
this in every slice.

By combining the two previous lemmas with this definition above, we obtain the following
result.

Proposition 3.3.7. Let I be an internally injective R-module in X, and let X € X. If X is
covered by a set, then X x I is an internally injective (X x R)-module.

Proof. Let I be an internally injective R-module in X, and let X € X. We wish to show that
X x [ is an internally injective (X x R)-module in X/X. Since X is covered by a set, we have an
effective epimorphism V' — X with 0-truncated domain. By Lemma 3.3.4, V' x [ is an internally
injective (V' x R)-module. But V' — X is a (—1)-connected object over X, thus by Lemma 3.3.5
we can descend internal injectivity from V' x I to X x [. OJ

Corollary 3.3.8. If sets cover in X, then internal injectivity of R-modules is stable by base
change. O

Our next goal is to extend this result to any slice of an oo-topos in which sets cover. This
generalization will let us understand the interpretation of internal injectivity when working in
a non-empty context in HoT'T, which corresponds to working in a slice of the chosen oco-topos
model. The key result is the following:

Proposition 3.3.9. Ifn-types cover in X, then n-types cover in X/ X for any (n+1)-type X € X.

Proof. Let X bein (n+1)-type in X and consider an object ¥ — X in X/X. Since n-types cover
in X, there is an effective epimorphism e : V' — Y with V an n-type in X. The map e defines
an effective epimorphism over X with domain the composite V' — Y — X. The latter is a map
from an n-type to an (n + 1)-type in X, which is necessarily n-truncated (as is easily shown in
HoTT, by showing that the fibers are all n-types). Hence the domain of e is n-truncated as an
object of X/X, so Y is covered by an n-type. O

Theorem 3.3.10. Suppose sets cover in X, and let X € X. For any ring R € X/*X, internal
injectivity of R-modules is stable by base change in X/X.

Proof. Let I € X/X be an internally injective R-module. The truncation map X — || X||; is
I-connected, and therefore induces an equivalence 7<o(X/||X|]1) = 7<o(X/X) by base change
[24, Lemma 7.2.1.13]. Moving back along this equivalence, I becomes an internally injective
module over || X||;. Since || X1 is a 1-type, the previous proposition implies that sets cover in
X/||X]|1. By Corollary 3.3.8, this means I is internally injective when pulled back to any slice
of X/||X||1. But any slice of X/X is a slice of X/||X]||1, so we are done. O

8See n-types cover (rev. 6) on the nLab.
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Remark 3.3.11. These methods apply in much greater generality than just internal injectivity.
Consider, for example, some “internal property” P of an object (or structure) in a 1-topos which is
stable by base change and descends along (effective) epimorphisms. Then, since the 0-truncated
objects in X form a 1-topos, we can ask whether the property P holds for some given O-truncated
object Y in any slice X/X. The arguments above show that if sets cover in X, then the property
P is stable by base change in X/X. (Making precise the meaning of “internal property” is beyond
our current scope.)

Corollary 3.3.12. Suppose sets cover in X. Consider an object X, a ring R € X/*X and an
R-module I. Then I is HoTT-injective if and only if it is internally injective. O

Using Corollary 3.3.12, we explain how the interpretation of our Ext groups from HoTT
recover the classical notion of sheaf Ext.

Definition 3.3.13. Let & be a 1-topos, let R be a ring object in €, and let B be an R-
module. We define the functor Ext(B, —) : Modg — Abx to be the nt? right derived functor
of Mod (B, —), where we use an external injective resolution to define the derived functor. We
refer to Ext’% (B, A) as sheaf Ext. We extend this definition to an co-topos X by applying it to
the 1-topos 7<o(X).

The sheaf Ext groups arise in algebraic geometry ([14, Chapitre IV], [18, Section III.6]) and
are also considered in |20, Section 18.4] and [4, Section 13.4].

For any R-module B in X, we obtain an internal functor Ext% (B, —) in X by interpretation,
which yields an ordinary functor Ext’;(B,—) : Modg — Aby. Here the ’ indicates that the
codomain consists of abelian group objects in X, not just X,. The dual of Proposition 2.5.4
lets us compute Ext% (B, A) via a HoTT-injective resolution of A. Combining the results of this
section, we obtain the following:

Theorem 3.3.14. Suppose sets cover in X. For any X € X, ring R € X/*X and R-module
B, the functor Extly(B,—) : Modg — AbIX/X 1s naturally isomorphic to the sheaf Ext functor
Extk(B,—). In particular, we may take Ext',(B, —) to land in Aby,/x.

Proof. Since (external) injectives in Modpg are always internally injective by [3, Theorem 3.8],
and moreover internal and HoTT-injectives coincide in X/X by Corollary 3.3.12, we can use an
(externally) injective resolution to compute Ext}% (B, —) by the dual of Proposition 2.5.4. But
this means that Ext’;(B, —) is the n'" right derived functor of the internal hom of R-modules,
meaning it is naturally isomorphic to Ext’(B, —). In particular, it is k-compact. O

It follows that the computation in Proposition 3.2.9 can be regarded as a computation of
sheaf Ext in the Sierpiriski co-topos, using a HoTT-projective resolution.

Remark 3.3.15. In his thesis, Blechschmidt gives a definition of sheaf Ext groups in the internal
language of a localic 1-topos using the existence of enough injectives [4, Section 13.4]. In contrast,
our internal Ext is the interpretation of Definition 2.1.5, which does not rely on injectives.

Since there are always enough internally injective R-modules (Remark 3.3.2), we deduce the
following:

Corollary 3.3.16. Let X € X. Suppose that sets cover in X and that the (set-restricted) global
points functor I'x : Sety,x — Set preserves epimorphisms. For any ring R € X/"X, R-
modules B and A, and n > 0, we have a natural isomorphism I'xExt'h(B, A) ~ Exti(B,A).
In particular, the ordinary Ext groups are obtained as the global points of sheaf Ext.
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Proof. An argument similar to Proposition 3.2.6 shows that internal injectivity implies external
injectivity of R-modules under our assumption on I'x. Thus internal and external injectivity
coincide, and are equivalent to HoTT-injectivity by Corollary 3.3.12. The statement follows by
the same proof as in Proposition 3.2.7, but using an (internally) injective resolution of A. O

Remark 3.3.17. It is well-known that the global points of sheaf Ext recover the ordinary Ext
groups whenever the global points functor I'x preserves epimorphisms (hence is exact). This
fact is an easy consequence of the (“local-to-global”) Grothendieck spectral sequence which relates
sheaf Ext and ordinary Ext, specifically:

(RPT)Ext%L(B,A) = Ext}, (B, A).

(Here R? denotes the pt" right derived functor.) Our assumption on I'x implies that RPI'x
vanishes for p > 0, which means this spectral sequence collapses at the Fy-page. It immediately
follows that we have an isomorphism I'xExts(B, A) ~ Ext}(B, A), for all n € N.

We also record the following corollary of Theorem 3.3.14.

Corollary 3.3.18. Suppose sets cover in X, and let X € X. The interpretation of Extk(B, A)
into X/ X depends solely on 7<o(X/X). O

There are many oo-toposes which share 1-toposes of 0-truncated objects. For example, if
X € 8 is a pointed, connected space, then O-truncated objects in the slice co-topos §/X are
m1(X)-sets. Thus if X is simply connected, these are just sets. Since sets cover in 8, the
corollary tells us that interpreting Ext% into any slice §/X with X simply connected yields the
same result (up to equivalence). This means in particular that we can move between 8 and 8§/X
when computing Ext';—a potentially useful trick.

3.4 Ext over BG Let X be a pointed, connected object in X, with base point * : X. In this
final section, we study Ext groups of abelian group objects in the slice X/ X, and relate them to
Ext groups in the base X. As we will see, these considerations are intimately related with those
of Section 2.7, and they illustrate the theory developed thus far in Section 3.

We refer to abelian group objects in X/X as (X xZ)-modules, as this makes the base clear.
We mention that the 1-truncation map X — Bmi(X) is 1-connected and therefore induces an
equivalence between the 1-topos of sets over X and the 1-topos of sets over Bm(X) by pulling
back [24, Lemma 7.2.1.13]. Accordingly, we get an equivalence Modyxz ~ Modp,, (x)xz of
categories of modules. To emphasize that no truncation assumptions are needed, we work with
X rather than Bm(X).

The category of (X xZ)-modules has another description. However, as we will see in a
moment, this other description is not equivalent when working internally, since it changes the
ambient topos. For any (0-truncated) group object G in X, we can form the internal group ring
ZG as the object @ Z with its natural ring structure. This is the result of interpreting the
group ring of Construction 2.7.1 into X. Being a G-set, ZG defines an object of X/BG which
may be seen to be the free abelian group on the base point (or universal cover) 1 — BG, though
we will not make use of this description.

Proposition 3.4.1. Restriction to the base point of X gives an equivalence of 1-categories

MOdXXZ =~ MOdZm(X)v
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where the left-hand side is the category of abelian groups in X/*X and the right-hand side is the
category of Zm1(X)-modules in Xy. In particular, we obtain an isomorphism

of external Ext groups for all (X xZ)-modules A and B.

We point out that this statement does not imply that Extx«z coincides with Extz., (x), as
the former is an abelian group in X/X, whereas the latter is an abelian group in X. However,
the relation between these objects is interesting and is further discussed below.

Proof. By [13, Theorem 4.3.4], the category Modxxz is equivalent to the category X (X, Modyz)
(whose categorical structure comes from Mody). The interpretation of Proposition 2.7.3 yields an
equivalence of categories X(X,Modz) =~ Modz,, (x) in X, where X(X,Modz) denotes the internal
category whose object of objects is the internal hom in X. On global points this yields the
desired equivalence of categories X(X,Modz) =~ Modz, (x). It follows that the stated (external)
Ext groups are isomorphic. O

Given a (X xZ)-module A, we call its restriction A, along 1 — X the underlying abelian
group object of A. This has a natural 71(X)-action, so it can also be regarded as a Zm(X)-
module in X. Note that the equivalence Modxxz ~ Modz,, (x) sends the ring X X Z to Z with
the trivial 71 (X)-action, and not to the ring Zm(X). We also warn the reader that care must
be taken when moving across this equivalence. For example, the category Modx 7 is enriched
over itself via the internal hom of abelian groups in X/* X, while Modz, (x) is naturally enriched
over Aby. These hom-objects live in different categories, but one can check that the latter is the
71(X)-fixed points of the former:

H MOdsz(B, A) ~ MOdZTrl(X) (B*, A*)
X

Because of the difference between these internal homs, many internal properties are not preserved
by the equivalence of Proposition 3.4.1. An example of this is given in Example 3.4.8, as explained
in the discussion immediately after it.

We record the following fact, which immediately follows from base-change stability of inter-
pretation.

Proposition 3.4.2. Let B and A be (X xZ)-modules. The underlying abelian group object of
the (X xZ)-module Ext% . , (B, A) is Ext} (B, As). O

A concrete description of the 71 (X)-action on Ext% (B, Ay) can be worked out from Propo-
sition 2.7.4 and the discussion surrounding it.

Remark 3.4.3. It might be tempting to believe that the abelian group object Ext%m(x)(B*, A)
is isomorphic to the fixed points of the Zm (X )-module Ext%, , (B, A). described by the previous
theorem. In general, this is not the case, as we will see in Example 3.4.9.

We deduce a vanishing result for Ext x«7z.

Corollary 3.4.4. Let n be a natural number. Suppose that Ext% (B, A) vanishes for all abelian
groups B and A in X,.. Then Ext" ., (N, M) also vanishes for all (X xZ)-modules N and M. O

Our next result characterizes internal injectivity of abelian groups in the slice X/X, and
generalizes [16, Proposition 1.2(i)] for ordinary sheaves on a space.
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Proposition 3.4.5. An (X xZ)-module is internally injective if and only if its underlying abelian
group object is internally injective. The same holds for internal projectivity.

Proof. We prove the injective case, as the projective case is shown similarly.

(—) Let I be an internally injective (X xZ)-module. A monomorphism i : A < B of abelian
groups in X pulls back to a monomorphism 7 : X x A < X x B between (X xZ)-modules (with
trivial action). Thus we get an epimorphism i* : Mody,7(X x B,I) - Mody,7(X x A,I)
of (X xZ)-modules. This homomorphism is given by ¢* : Mod, (B, I.) — Mody,(A, I.) on the
underlying abelian group objects, since base change (here along 1 — X') respects internal homs.
The latter map is therefore an epimorphism, as desired.

(+-) By Lemma 3.3.5 we can descend internal injectivity along the effective epimorphism
1 — X, meaning I is an internally injective (X xZ)-module whenever I, is an internally injective
abelian group object. O

We note that the proof of (—) only used that X was pointed.

Remark 3.4.6. The previous proposition gives another way of understanding Proposition 3.4.2.
Namely, if one computes Ext’y, , (B, A) using an internally injective resolution of (X xZ)-modules
(which always exists), then the underlying abelian resolution can also be used to compute
Ext (B, As). Thus we see that the latter is the underlying abelian group object of the for-
mer.

Before our next examples, we show that internal projectivity and HoTT-projectivity coincide
in spaces.

Proposition 3.4.7. In the oo-topos of spaces, HoTT-projectivity and internal projectivity of
modules coincide.

Proof. Firstly, note that external and internal projectivity coincide in spaces. Now, suppose that
P is an (internally) projective R-module. By Proposition 3.2.2, we need to show that X x P is
an internally projective (X x R)-module in X/X, for any X € X. Since sets cover in spaces, and
internal projectivity descends along effective epimorphisms by a proof analogous to Lemma 3.3.5,
we can assume that X is a set. Then an (X xR)-module is simply an X-indexed collection of
R-modules, and the internal hom of such is the indexwise hom. The axiom of choice implies
that an X-indexed collection of epimorphisms defines an epimorphism between the collections,
so X x P is internally projective. O

We now give examples of modules which are internally projective, but not externally projec-
tive.

Ezample 3.4.8. Let G be a non-trivial (0-truncated) group in 8. The (BG xZ)-module BG X Z is
internally projective, but not externally projective. It follows that there exists a (BG xZ)-module
A so that Exth, ,(BG x Z, A) = 0 and Exth,,(BG x Z, A) # 0.

Proof. Any ring is HoTT-projective as a module over itself, and is therefore internally projective.
In particular, BG x Z is internally projective. (This can also be seen from Proposition 3.4.5.)
External projectivity of (BGxZ)-modules corresponds to ordinary projectivity of ZG-modules
by Proposition 3.4.1. As a ZG-module, BG X Z corresponds to the abelian group Z with trivial
G-action. Since G is non-trivial, the augmentation homomorphism ZG — 7Z cannot split, thus
Z is not projective. The last claim follows from Proposition 2.5.2. O
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As mentioned above, for a module in 8, internal and external projectivity agree. So the
example shows that while BG X Z is internally projective as a (BG xZ)-module, the corresponding
ZG-module Z is not internally projective. This demonstrates the sense in which the equivalence
of Proposition 3.4.1 does not respect internal properties, since the ambient topos changes. This is
also demonstrated by the following example, which ties together many of our results and remarks
into a concrete example in spaces.

Ezample 3.4.9. Take X to be 8 and G to be a (0-truncated) group. Since Abg = Ab has global
dimension 1 and Ext% interprets to ordinary Ext; by Proposition 3.1.1, we deduce that Ext}
vanishes for n > 1. Corollary 3.4.4 then says that Ext',,, vanishes for n > 1. Even more,
Ext} oy (BG x Z, M) vanishes for all n > 1 and every M, since BG x Z is internally projective.
On the other hand, by Proposition 3.4.1, the ordinary Ext groups Ext’ye, ,(BG X Z, A) are the
same as the ordinary Ext groups Ext7~(Z, A.), which need not vanish. For example, it is well
known that Ext7,(Z, M) = H"(BG; M), which may be nonzero for all n € N. Indeed, as we
saw in Example 3.4.8, Z with trivial action is not a projective ZG-module. Note also that Ext7
agrees with Ext7, again using Proposition 3.1.1. In particular, as mentioned in Remark 3.4.3,
it is not the case in general that Ext7 . can be described as the fixed points of the ZG-module
corresponding to Ext’y, ,, even for n = 1.

We explain this phenomenon in a bit more detail. A short exact sequence of (BG xZ)-modules

0—-A—F—>B—0

may be seen both as an element of the abelian group Exth. (B, A) = Ext}(By, A,), and as an
element (indeed, G-fixed point) of the ZG-module Ext}, ; (B, A),. This extension E is trivial
as an element of the former if and only if the epimorphism F — B admits a (BGxZ)-module
section (i.e., a G-equivariant section). In contrast, E is trivial as an element of the latter if and
only if the underlying homomorphism F, — B, of abelian groups admits an abelian section, by
Proposition 3.4.2.
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