
Higher Structures 9(2):136–167, 2025.

HIGHER
STRUCTURES

An A∞-version of the Eilenberg–Moore theorem
Matthias Franza

aDepartment of Mathematics, University of Western Ontario, London, Ont. N6A 5B7, Canada

Abstract

We construct an A∞-structure on the two-sided bar construction involving homotopy Gersten-
haber algebras (hgas). It extends the non-associative product defined by Carlson and the au-
thor and generalizes the dga structure on the one-sided bar construction due to Kadeishvili–
Saneblidze. As a consequence, the multiplicative cohomology isomorphism from the Eilenberg–
Moore theorem is promoted to a quasi-isomorphism of A∞-algebras.

We also show that the resulting product on the differential torsion product involving cochain
algebras agrees with the one defined by Eilenberg–Moore and Smith, for all triples of spaces.
This is a consequence of the following result, which is of independent interest: The strongly
homotopy commutative (shc) structure on cochains inductively constructed by Gugenheim–
Munkholm agrees with the one previously defined by the author for all hgas.
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1. Introduction

The Eilenberg–Moore theorem is an important result in the theory of fibre bundles and fibrations.
Let p : E → B be a Serre fibration, g : X → B a map and Ẽ = g∗E the pull-back of E along g,

Ẽ E

X B.

p̃

g̃

p

g

(1.1)

Under suitable assumptions on the spaces involved and on the coefficient ring k (to be recalled
in Theorem 4.1), the Eilenberg–Moore theorem relates the singular cohomology H∗(Ẽ) to the
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cohomologies of B, E and X, all with coefficients in k. This is done via a spectral sequence
converging to H∗(Ẽ) with second page

E2 = TorH∗(B)
(
H∗(X), H∗(E)

)
. (1.2)

The spectral sequence is one of algebras and converges to H∗(Ẽ) as an algebra.
In fact, out of the underlying normalized singular cochain complexes, one can construct a

certain complex whose cohomology

TorC∗(B)
(
C∗(X), C∗(E)

)
, (1.3)

called a differential torsion product, is naturally isomorphic to H∗(Ẽ). This underlying com-
plex involves a suitable resolution of, say, C∗(E) over C∗(B), in the same way as the torsion
product (1.2) can be constructed out of a resolution of H∗(E) over H∗(B). In both cases the
module structures are given by the map p∗.

The fact that cohomology algebras are graded commutative implies that (1.2) has a canon-
ical algebra structure. If the two-sided bar construction B

(
H∗(X), H∗(B), H∗(E)

)
is used to

compute (1.2), then the product is the componentwise product of H∗(X) and H∗(E) together
with the shuffle product in B H∗(B).

This breaks down on the cochain level because there the cup product is not graded commu-
tative anymore. In particular, while the two-sided bar construction

B
(
C∗(X), C∗(B), C∗(E)

)
(1.4)

is a canonical choice for the complex underlying the differential torsion product (1.3), a multi-
plication based on the shuffle product would not be a chain map. The classical way to address
this is to define a product on the differential torsion product (1.3) via (the transpose of) the
shuffle map, without a cochain-level multiplication on the bar construction (1.4). This is pos-
sible because the shuffle map is a morphism of differential graded coalgebras (dgcs) and also a
homotopy inverse to the Alexander–Whitney map underpinning the dga structure of singular
cochains. Still, a product on (1.4) is desirable in some applications.

Assume that X is a point, so that the pull-back Ẽ is the fibre F of the fibration. Since
we use normalized cochains, we have C∗(X) = k, and the two-sided bar construction becomes
one-sided,

B
(
k, C∗(B), C∗(E)

)
. (1.5)

In this situation, Kadeishvili–Saneblidze have defined a product on (1.5) that turns the bar
construction into a differential graded algebra (dga) and the canonical map

B
(
k, C∗(B), C∗(E)

)
→ C∗(F ), [b1| . . . |bk]e 7→

e|F if k = 0,
0 otherwise

(1.6)

into a quasi-isomorphism of dgas. This is done by adding correction terms to the shuffle product.
These correction terms involve certain natural operations

Ek : C∗(X) ⊗ C∗(X)⊗k → C∗(X) (1.7)

for the normalized cochains of any space X. The operation E1 is essentially the cup-1-product;
the others are certain multilinear variants of it. Together they turn C∗(X) into what is called a
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homotopy Gerstenhaber algebra (hga), which is a specific kind of E2-algebra. An hga structure
on a dga A defines an associative multiplication on the bar construction B A = B(k, A, k), and
the Kadeishvili–Saneblidze product on (1.5) is an extension of it. See Section 2.4 for precise
definitions.

In order to describe the cup product in the cohomology of a general pull-back, Carlson and
the author [6] have defined a product on the two-sided bar construction (1.4), again based on
the hga structure of singular cochains. While not turning (1.4) into a dga, this product is a
chain map and the canonical map

B
(
C∗(X), C∗(B), C∗(E)

)
→ C∗(Ẽ), (1.8)

x[b1| . . . |bk]e 7→

p̃∗(x) g̃∗(e) if k = 0,
0 otherwise

multiplicative up to some homotopy. This is enough to conclude that the map

TorC∗(B)
(
C∗(X), C∗(E)

)
→ H∗(Ẽ) (1.9)

induced in cohomology is multiplicative.
That the product on (1.4) is not associative anymore and the map (1.8) not multiplicative

seems unavoidable. It is therefore natural to consider the next best thing beyond dgas, which
are A∞-algebras. Recall that an A∞-algebra is a cochain complex A together with maps

mn : A⊗n → A (1.10)

of degree 2 − n for n ≥ 2 such that the “product” m2 is a chain map, associative up to the
homotopy m3. The higher maps are homotopies between the different ways to compose the
previous maps; see Section 2.5 for a precise definition. Any dga is canonically an A∞-algebra
by defining m2 to be the product and all other mn to be 0.

Similarly, a morphism of A∞-algebras f : A ⇒ B is a family of maps

fn : A⊗n → B (1.11)

of degree 1 − n for n ≥ 1 such that f1 : A → B is a chain map, multiplicative up to the
homotopy f2. The higher maps are homotopies between the different ways to combine the
lower-order maps with the structure maps of the two A∞-algebras. The morphism f is a quasi-
isomorphism if f1 is so.

In this paper we prove the following:

Theorem 1.1. The Carlson–Franz product extends to an A∞-structure on the two-sided bar
construction B

(
C∗(X), C∗(B), C∗(E)

)
, and the map (1.8) to a morphism of A∞-algebras

f : B
(
C∗(X), C∗(B), C∗(E)

)
⇒ C∗(Ẽ) (1.12)

(where the target is a dga). Hence f is a quasi-isomorphism of A∞-algebras whenever the
map (1.8) is a quasi-isomorphism of complexes.

See Theorem 3.8 and Proposition 3.10. This confirms a conjecture expressed in [6, Rem. A.26].
Theorem 1.1 holds in fact for general hgas, and the maps mn and fn are given explicitly in terms
of the hga operations. In particular, they are natural with respect to maps of triples of hgas.
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That the quasi-isomorphism (1.8) can be extended to one of A∞-algebras follows from general
results about the transfer of A∞-structures, at least for field coefficients. See Remark 4.2 for
details. However, in such an approach the resulting structure would depend on certain choices;
one can therefore not expect it to be natural. Moreover, it would be unclear whether an A∞-
structure exists for hgas in general, without a quasi-isomorphism like (1.8). Even in the context
of the Eilenberg–Moore theorem, expressing the A∞-structure maps in terms of hga operations is
useful because some spaces (notably the classifying space of a torus) are known to be homotopy
Gerstenhaber formal in the sense that there is a quasi-isomorphism of dgas from cochains to
cohomology annihilating all hga operations, cf. [12, Thm. 9.6], [13, Thm. 1.3].

Whenever the conclusion of the Eilenberg–Moore theorem holds, both the product defined
by Carlson–Franz and the one originally considered by Eilenberg–Moore [9] and Smith [29]
correspond to the cup product in C∗(Ẽ) and therefore agree. We give a direct proof of this fact
that does not appeal to the Eilenberg–Moore theorem and holds without any assumptions on
the spaces involved.

Theorem 1.2. Let B, X and E be spaces or simplicial sets. The Carlson–Franz product
on TorC∗(B)

(
C∗(X), C∗(E)

)
(in other words, the one induced by the A∞-structure from Theo-

rem 1.1) agrees with the one previously defined by Eilenberg–Moore and Smith.

See Theorem 7.1. This result has simultaneously been obtained by Carlson [5]. It is a con-
sequence of a result about strongly homotopy commutative (shc) algebra structures on singular
cochains.

Recall that an shc structure on a dga A is an extension of the multiplication map A⊗A → A

to an A∞-morphism A⊗A ⇒ A. Gugenheim–Munkholm [19] constructed a natural shc structure
on C∗(X) based on the Eilenberg–Zilber maps. On the other hand, we have shown in [10] that
any hga has a canonical shc structure, given explicitly in terms of the hga operations. In this
paper we prove the following, see Theorem 6.1.

Theorem 1.3. Let X be a space or a simplicial set. The shc structure on C∗(X) constructed
by Gugenheim–Munkholm coincides with the one coming from the hga structure of C∗(X).

While not being part of the original construction, the Gugenheim–Munkholm shc map can
be used to define the product on TorC∗(B)

(
C∗(X), C∗(E)

)
. Theorem 1.2 follows easily from

this fact together with Theorem 1.3.
Since the multiplication on the bar construction B C∗(X) is determined by the shc map

C∗(X) ⊗ C∗(X) ⇒ C∗(X) associated to the hga structure, we also recover a result of Hess–
Parent–Scott–Tonks [20] about the relation between the Gugenheim–Munkholm shc structure
and the multiplication in B C∗(X), see Corollary 6.2.

We note that Carlson [4] studies ring structures on differential torsion products for other
E2-algebras beyond hgas as well as commutative ring structures for E3-algebras. In the context
of the Eilenberg–Moore theorem it is clear that the resulting product on the differential tor-
sion product is graded commutative since it computes H∗(Ẽ). We have not investigated what
happens for general hgas. Presumably, one could get a graded commutative product by assum-
ing certain additional structures, for example the ‘extended hga’ operations considered in [10,
Sec. 3.2].

The structure of the paper is as follows: After reviewing background material in Section 2, we
prove Theorem 1.1 in Section 3 and spell out the resulting A∞-version of the Eilenberg–Moore
theorem in Section 4. In Section 5 we review additional background material that is needed for
proving Theorem 1.3 in Section 6 and Theorem 1.2 in Section 7.
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2. Preliminaries

2.1 Generalities. We work over a commutative ring k with unit. All tensor products are
taken over k. All complexes are chain complexes (with a differential d of degree −1) or cochain
complexes (with a differential of degree +1) of k-modules. The identity map on a complex C is
denoted by 1C and the degree of an element c by |c|. The differential on the desuspension s−1C

of a complex C is given by
d s−1c = −s−1 dc (2.1)

for c ∈ C.
Let A and B be complexes, and let f : A → B be a linear map of degree |f | ∈ Z. The

differential of f is the linear map

d(f) = dB f − (−1)|f | f dA. (2.2)

of degree |f | ± 1.
Let A be an augmented dga with multiplication µA : A ⊗ A → A augmentation εA : A → k,

and let C be a coaugmented coalgebra with comultiplication ∆C : C → C ⊗ C and coaugmenta-
tion ιC : k → C. A twisting cochain is a linear map t : C → A of degree ±1 such that

d(t) = t ∪ t := µA (t ⊗ t) ∆C , t ιC = 0, εA t = 0. (2.3)

2.2 Sign convention. Most signs in our formulas come from the Koszul sign rule according
to which the transposition of two graded objects x and y incurs the sign (−1)|x||y|. (We have seen
this already in (2.1).) In order to avoid excessive sign exponents, we adopt the sign convention
of [10] and [12]: Whenever we write equalities with the symbol “κ=”, we omit the signs that come
from permuting variables or from moving maps past variables (from the left). For example, if
we write

f(a, b, c) κ= a ⊗ g(c, h(b)), (2.4)

then this stands for

f(a, b, c) = (−1)ε a ⊗ g(c, h(b)) with ε = |b||c| + |g||a| + |h|(|a| + |c|). (2.5)

2.3 Bar constructions

2.3.1 The usual bar construction. Let A be an augmented dga. We write ι : k → A for the
unit map of A, ε : A → k for the augmentation and ā = a − ι(ε(a)) for the component of a ∈ A

in the augmentation ideal Ā = ker ε ◁ A.
The (reduced) bar construction of A is the dgc

B A =
⊕
k≥0

(s−1Ā)⊗k (2.6)

with diagonal

∆ [a1| . . . |ak] =
k∑

i=0
[a1| . . . |ai] ⊗ [ai+1| . . . |ak], (2.7)
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augmentation

ε([a1| . . . |ak]) =

1 if k = 0,
0 otherwise,

(2.8)

coaugmentation
ι : k → B A, 1 7→ 1 := [ ] (2.9)

and differential

d [a1| . . . |ak] = −
k∑

i=0
(−1)εi [a1| . . . |dai| . . . |ak] +

k−1∑
i=1

(−1)εi [a1| . . . |aiai+1| . . . |ak] (2.10)

where
εi = |a1| + · · · + |ai| − i. (2.11)

(The first line in (2.10) is the tensor product differential of (s−1Ā)⊗k.)
We write elements of B A also in the form

a = [a1| . . . |ak] ; (2.12)

we define the length of such an element to be k. We use the Sweedler notation without explicit
sum signs. The formula (2.7) for the diagonal then reads

∆a = a(1) ⊗ a(2). (2.13)

We can consider the desuspension s−1a of some a ∈ Ā as an element [a] ∈ B A of length 1.
There is the canonical twisting cochain

tA : B A → A, [a1| . . . |ak] 7→

a1 if k = 1,
0 otherwise.

(2.14)

2.3.2 One- and two-sided bar constructions. Let A′ and A′′ also be augmented dgas. We
assume that we have morphisms A → A′ and A → A′′, but we suppress these maps from our
notation in order to make formulas more readable.

The two-sided bar construction associated to the triple (A′, A, A′′) is

B(A′, A, A′′) = A′ ⊗ B A ⊗ A′′ ; (2.15)

we write elements in the form
↔
a = a′ ⊗ a ⊗ a′′ = a′[a1| . . . |ak]a′′ ; (2.16)

the length of ↔a is the length of a.
Using the notation introduced above including the canonical twisting cochain t = tA, the

differential on B(A′, A, A′′) is

d
↔
a = d⊗

↔
a + (−1)|a| aa1[a2| . . . |ak]a′′ − (−1)|a|+εk−1 a[a1| . . . |ak−1]aka′′ (2.17)

κ= d⊗
↔
a + a′ t(a(1)) ⊗ a(2) ⊗ a′′ − a′ ⊗ a(1) ⊗ t(a(2)) a′′

where d⊗ denotes the tensor product differential on A′ ⊗ B A ⊗ A′′. The second and third term
in the last line are only present for k ≥ 1. For later use we introduce the abbreviation

λt
↔
a

κ= a′ t(a(1)) ⊗ a(2) ⊗ a′′ (2.18)
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for the “left” twisting term.
Setting A′ = A′′ = k recovers the usual bar construction. Setting only one of them equal

to k gives the left bar construction B(A′, A,k) and the right bar construction B(k, A, A′′),
respectively. We write elements in these bar constructions as

←
a = a′ ⊗a = a′[a1| . . . |ak] ∈ B(A′, A,k), (2.19)
→
a = a⊗ a′′ = [a1| . . . |ak]a′′ ∈ B(k, A, A′′). (2.20)

The diagonal (2.7) of the dgc B A generalizes to the chain map
↔
∆: B(A′, A, A′′) → B(A′, A,k) ⊗ B(k, A, A′′), (2.21)

↔
∆↔a =

k∑
i=0

a′[a1| . . . |ai] ⊗ [ai+1| . . . |ak]a′′ =: ←a
(1)

⊗→a
(2)

.

It contains the maps
←
∆: B(A′, A,k) → B(A′, A,k) ⊗ B A, (2.22)
→
∆: B(k, A, A′′) → B A ⊗ B(k, A, A′′) (2.23)

as special cases. Together they have the “coassociativity” property

(
←
∆ ⊗ 1)

↔
∆ = (1 ⊗

→
∆)
↔
∆: B(A′, A, A′′) → B(A′, A,k) ⊗ B A ⊗ B(k, A, A′′). (2.24)

The shuffle product

∇ : B A ⊗ B A → B(A ⊗ A), a ⊗ b 7→ a • b (2.25)

(see for instance [24, p. 247] or [12, Ex. 2.1] for a definition) is a morphism of dgcs and extends
to the chain map

∇ : B(A′, A, A′′) ⊗ B(A′, A, A′′) → B(A′ ⊗ A′, A ⊗ A, A′′ ⊗ A′′), (2.26)

∇(↔a,
↔
b ) κ= a′b′ ⊗ a • b ⊗ a′′b′′.

We call the latter one again a shuffle map, and we do the same for the corresponding maps in
cohomology.

If A is graded commutative, then the composition of the shuffle map with the map B µA

induced by the multiplication map for A turns B A into a dg bialgebra. Similarly, if also A′

and A′′ are cdgas, then one gets a dga structure on B(A′, A, A′′). This breaks down if one drops
the commutativity assumptions. In Sections 2.4 and 3 we will see how homotopy Gerstenhaber
structures come to a rescue.

2.3.3 Differential torsion products. The differential torsion product

TorA(A′, A′′) (2.27)

is defined in [18, Def. 1.1] via so-called Künneth resolutions. These resolutions include the
proper projective resolutions that are considered in [29, Def. I.1.1], and in [24, Def. 7.5] under
the assumption that A and H∗(A) are flat over k.1

1The assumption that H∗(A) be k-flat is missing in [29]. It seems to be required to ensure that the cohomology
of a proper projective A-module is again projective.
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Assume that k is a principal ideal domain and that A and A′′ (or A and A′) are torsion-free
over k. In this case, the cohomology of the two-sided bar construction B(A′, A, A′′) is naturally
isomorphic to the differential torsion product (2.27), even if the bar construction itself may
not be a Künneth resolution, see [1, p. 1148]. (Naturality follows from inspection of the proof
of [1, Prop. 10.16]. Moreover, this isomorphism is compatible with the augmentation maps
to H∗(A′ ⊗A A′′).

2.4 Homotopy Gerstenhaber algebras

2.4.1 Definition. A homotopy Gerstenhaber algebra (hga) is an augmented dga with certain
additional operations

Ek : A ⊗ A⊗k → A (2.28)

for k ≥ 1 that define a product

µ : B A ⊗ B A → B A, µ(a, b) = a · b, (2.29)

turning the bar construction B A into a dg bialgebra with unit 1, cf. [16, Def. 2, Sec. 3.2]. The
correspondence between the operations Ek and the product µ is as follows: As a morphism of
dgcs, µ is determined by the associated twisting cochain

E = tA µ : B A ⊗ B A → Ā. (2.30)

Being a twisting cochain means that

d(E)(a, b) κ= E(a(1), b(1)) E(a(2), b(2)) (2.31)

for any a, b ∈ B A. That 1 ∈ B A is a two-sided unit for µ and that µ is associative is encoded
by the identities

E(a, 1) = E(1,a) = tA(a) (2.32)
E(a, b · c) = E(a · b, c) (2.33)

for a, b, c ∈ B A. Among all such twisting cochains B A ⊗ B A → A, the ones coming from an
hga structure are exactly those satisfying

E(a, b) = 0 if lengtha ≥ 2. (2.34)

Note that E(a, b) is determined by (2.32) if lengtha = 0 or length b = 0. Finally, for a = [a]
and b = [b1| . . . |bk] with k ≥ 1 we have

E(a, b) = ±Ek(a; b1, . . . , bk) (2.35)

where the sign is a matter of convention. One also defines E0(a) = a for all a ∈ A. For one choice
of signs, the properties of the operations Ek equivalent to (2.31)–(2.33) are spelled out in [10,
Sec. 3.1] and [12, Sec. 6.1]. In this paper, we will mostly work with the twisting cochain E.

Any graded commutative dga (cdga) is canonically an hga by setting Ek = 0 for all k ≥ 1.
This applies in particular to the cdga k. With this convention, the dga augmentation map
ε : A → k of an hga becomes a morphism of hgas.
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We point out that there is also a different convention where the roles of the first and the
second argument of E are reversed, leading to operations

Ẽk : A⊗k ⊗ A → A. (2.36)

See [21, Sec. 7], for instance.
Let X be a pointed topological space or simplicial set. Its normalized cochain complex C∗(X)

with coefficients in k has a natural hga structure, see [16, Sec. 2.3], [12, Sec 8.2] or Section 5.6.

2.4.2 The product on the right bar construction. Kadeishvili–Saneblidze have defined an as-
sociative product on the right bar construction of 1-reduced hgas [21, Cor. 6.2 & 7.2].2 As
remarked in [12, Prop. 7.6], the definition works for all hgas.

Let A and A′′ be hgas, connected via a morphism of hgas A → A′′ (which we again do not
indicate). The product in B(k, A, A′′) defined by Kadeishvili–Saneblidze has the form

→
a ·
→
b

κ=
∑

a · b(1) ⊗E
(
[ā′′], b(2)) b′′ + a · b⊗ ε(a′′) b′′. (2.37)

Recall that [ā′′] denotes the desuspension s−1ā′′ of ā′′ = a′′ − ι(ε(a′′)) ∈ Ā′′, considered as
an element of B(A′′). The above product turns B(k, A, A′′) into an augmented dga with unit
1B A ⊗ 1A′′ and augmentation εB A ⊗ εA′′ .

Lemma 2.1. For →a,
→
b ∈ B(k, A, A′′) we have

→
∆(→a ·

→
b ) κ= a(1) · b(1) ⊗→a

(2)
·
→
b

(2)
∈ B A ⊗ B(k, A, A′′).

Proof. This follows from the definition (2.37) and the fact that B A is a bialgebra, so that

∆(a · b) κ= a(1) · b(1) ⊗ a(2) · b(2) (2.38)

for a, b ∈ B A.

2.5 A∞-algebras and morphisms. We follow Keller [22, Sec. 3], but we rewrite the for-
mulas in a way that uses the differential of a map as defined in (2.2).

An A∞-structure on a cochain complex A is a family of map mn : A⊗n → A of degree 2 − n

for n ≥ 2 such that

d(mn)(a1, . . . , an) κ=

−
n−1∑
l=2

n−l∑
i=0

(−1)i+l(n−i−l) mn−l+1
(
a1, . . . , ml(ai+1, . . . , ai+l), . . . , an

)
(2.39)

for all n ≥ 2 and all a1, . . . , an ∈ A. It is strictly unital if there is a cocycle 1 ∈ A such that
m2(a, 1) = m2(1, a) for all a ∈ A and additionally any mn with n ≥ 3 vanishes if some argument
equals 1. Any dga is a strictly unital A∞-algebra by setting m2 equal to the product and mn = 0
for n ≥ 3.

Regarding morphisms, we only need the special case where the target is a dga. An A∞-
map f : A ⇒ B from an A∞-algebra A to a dga B is a family of linear maps fn : A⊗n → B of
degree 1 − n, n ≥ 1, such that

2Since Kadeishvili–Saneblidze work with the operations we denoted Ẽk above, they obtain an associative product
on the left bar construction. Also, a wrong sign in their definition of the product is corrected in [27, Rem. 2].
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d(fn)(a1, . . . , an) κ=
n−1∑
l=1

(−1)l fl(a1, . . . , al) · fn−l(al+1, . . . , an)

+
n∑

l=2

n−l∑
i=0

(−1)i+l(n−i−l) fn−l+1
(
a1, . . . , ml(ai+1, . . . , ai+l), . . . , an

)
(2.40)

for all n ≥ 1 and all a1, . . . , an ∈ A. It is strict if fn = 0 for n ≥ 2, in which case the above
identities reduce to

d(f1) = 0, (2.41)
f1(m2(a1, a2)) = f1(a1) · f1(a2), (2.42)

f1(mn(a1, . . . , an)) = 0 (2.43)

for n ≥ 3. A morphism f : A ⇒ B as before is strictly unital if f1(1A) = 1B and any fn

with n > 1 vanishes if some argument equals 1A.
Regarding augmentations, we limit ourselves to strict ones. We say that a strictly unital

A∞-algebra A is augmented if there is a strict morphism εA : A → k such that εA(1A) = 1.
An augmented morphism from an augmented A∞-algebra to an augmented dga B is a strictly
unital A∞-morphism f : A ⇒ B such that εB f1 = εA and εB fn = 0 for n ≥ 2. (This means
that the A∞-composition εB ◦ f equals εA, considered as an A∞-map.)

In the case of two augmented dgas A and B, augmented A∞-morphisms f : A ⇒ B are
in bijection with morphisms of coaugmented dgcs B f : B A → B B, cf. [22, Sec. 3.6]. The
composition of an augmented A∞-morphism f : A ⇒ B with an augmented dga map g : B → B′

is the augmented A∞-morphism g ◦ f : A ⇒ B′ defined by

(g ◦ f)n = g fn : A⊗n → B′. (2.44)

It corresponds to the morphism of dgcs B g B f : B A → B B′. Similarly, the composition of f

with an augmented dga map h : A′ → A is the augmented A∞-morphism f ◦ h : A′ ⇒ B defined
by

(f ◦ h)n = fn h⊗n : (A′)⊗n → B, (2.45)

corresponding to the morphism of dgcs B f B h : B A′ → B B.

Remark 2.2. A∞-maps also induce maps between two-sided bar constructions. Assume that

A′ A A′′

B′ B B′′

f ′ f f ′′ (2.46)

is a commutative diagram, where all objects are dgas, the horizontal maps dga morphisms and
the vertical ones A∞-morphisms. (Everything is assumed to be augmented.) Such a diagram
induces a chain map

B(f ′, f, f ′′) : B(A′, A, A′′) → B(B′, B, B′′) (2.47)

in a functorial way. Whenever the two-sided bar constructions compute the differential torsion
products, we likewise get a map

Torf (f ′, f ′′) : TorA(A′, A′′) → TorB(B′, B′′), (2.48)

in cohomology, see [19, Thm. 3.5∗], [3, Prop. 1.26, Notation 1.33], or [30, Thm. 7] for special
cases.
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3. The A∞-structure on the two-sided bar construction

3.1 Definition of maps. Let A, A′ and A′′ be hgas with hga morphisms A → A′ and A → A′′.
As before, we do not indicate these maps.

For A = A′ there are a “right shift” map

S : B(A, A, A′′) → B(k, A, A′′), a[a1| . . . |ak]a′′ 7→ [ā|a1| . . . |ak]a′′ (3.1)

of degree −1 and an “augmentation map”

f1 : B(A, A, A′′) → A′′,
↔
a 7→ a′ ε(a) a′′. (3.2)

The latter is a chain map. Note that for A′′ = k we get elements S(←a) ∈ B A and f1(←a) =
ε(a′) ε(a) ∈ k.

Our starting point for the A∞-structure on the two-sided bar construction is the dga structure
in the right bar construction B(k, A, A′′) recalled in Section 2.4.2. Based on it and on the map

h : B(A, A, A′′) ⊗ B(A, A, A′′) → B(A, A, A′′), (3.3)

h(↔a,
↔
b ) κ= a′ ⊗→a · S(

↔
b ),

we define the family of maps

hn : B(A, A, A′′)⊗n → B(A, A, A′′) (3.4)

of degree 1 − n for n ≥ 1 by

h1(↔a1) = ↔
a1, (3.5)

h2(↔a1,
↔
a2) = h(↔a1,

↔
a2), (3.6)

hn(↔a1, . . . ,
↔
an) κ= hn−1

(↔
a1, . . . ,

↔
an−2, h(↔an−1,

↔
an)

)
. (3.7)

Combining h with the map f1 introduced in (3.2), we additionally define the maps

fn : B(A, A, A′′)⊗n 7→ A′′, fn(↔a1, . . . ,
↔
an) = f1(hn(↔a1, . . . ,

↔
an)) (3.8)

of degree 1 − n for n ≥ 2. Then

fn(↔a1, . . . ,
↔
an) κ= fn−1(↔a1, . . . , h(↔an−1,

↔
an)) (3.9)

for n ≥ 2. Note that we also have f1(↔a1) = f1(h1(↔a1)) in analogy with (3.8).
Note that both hn and fn are morphisms of right A′′-modules if A′′ acts from the right on

the last tensor factor of B(A, A, A′′)⊗n.
We finally define maps

mn : B(A′, A, A′′)⊗n → B(A′, A, A′′) (3.10)

of degree 2 − n via

m2(↔a1,
↔
a2) κ= a′1 E

(
a

(1)
1 , S h1(←a

(1)
2 )

)
⊗
→
a

(2)
1 ·→a

(2)
2 + a′1 ε(a′2)⊗→a1 ·→a2 (3.11)

mn(↔a1, . . . ,
↔
an) κ= a′1 E

(
a

(1)
1 , S hn−1(←a

(1)
2 , . . . ,

←
a

(1)
n )

)
⊗
→
a

(2)
1 · · ·→a

(2)
n (3.12)

for n ≥ 3. Here a
(1)
1 is considered as an element of B A′ and ←

a
(1)
2 , . . . , ←a

(1)
n as elements

of B(A′, A′, k). In the first term of (3.11) we have written h1(←a
(1)
2 ) instead of ←a

(1)
2 to highlight

the analogy with the formula for n > 2.
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Remark 3.1. The map m2 agrees with the non-associative product on B(A′, A, A′′) defined
by Carlson–Franz, see [6, Thm. A.5] and also Remark 5.1. Moreover, f2 is the homotopy h

from f1(↔a1) f1(↔a2) to f1(m2(↔a1,
↔
a2)) given in [6, eq. (A.19)].

3.2 Some lemmas

Lemma 3.2. For ↔a ∈ B(A, A, A′′) we have

→
∆ S(↔a) = 1 ⊗ S(↔a) + S(←a

(1)
) ⊗→a

(2)
∈ B A ⊗ B(k, A, A′′),

d(S)(↔a) = ε(a′)a⊗ a′′ − 1⊗ f1(↔a) ∈ B(k, A, A′′).

We omit the short proof. The case A′′ = k is can be found in [19, §2.3]; there one gets in
particular

d(S)(←a) = ε(a′)a − ε(a′) ε(a) 1. (3.13)

Lemma 3.3. For n ≥ 1 and ↔a1, . . . , ↔an ∈ B(A, A, A′′) we have

↔
∆ hn(↔a1, . . . ,

↔
an) κ= hn(←a

(1)
1 , . . . ,

←
a

(1)
n ) ⊗→a

(2)
1 · · ·→a

(2)
n

+
n−1∑
k=1

hk(←a
(1)
1 , . . . ,

←
a

(1)
k ) ⊗→a

(2)
1 · · ·→a

(2)
k · S hn−k(↔ak+1, . . . ,

↔
an),

where the maps hn and hk on the right-hand side take values in B(A, A, k).

Proof. For n = 1 our claim reduces to formula (2.21). For n = 2 it means

↔
∆ h(↔a1,

↔
a2) κ= h(←a

(1)
1 ,
←
a

(1)
2 ) ⊗→a

(2)
1 ·→a

(2)
2 +←a

(1)
1 ⊗→a

(2)
1 · S(↔a2), (3.14)

which is a consequence of Lemmas 2.1 and 3.2. The claim for n ≥ 3 now follows by induction.

Lemma 3.4. For n ≥ 2 we have
↔
∆ mn(↔a1, . . . ,

↔
an) κ= mn(←a

(1)
1 · · ·←a

(1)
n ) ⊗→a

(2)
1 · · ·→a

(2)
n (3.15)

where the map mn on the right-hand side takes values in the left bar construction B(A′, A,k).

Proof. This holds by construction and Lemma 2.1.

Lemma 3.5. For n ≥ 2 and ↔a1, . . . , ↔an+1 ∈ B(A, A, A′′) we have

mn
(↔
a1, . . . , h(↔an,

↔
an+1)

) κ= mn+1(↔a1, . . . ,
↔
an+1) + (−1)n h

(
mn(↔a1, . . . ,

↔
an),↔an+1

)
.

Proof. This follows from the definitions and the case n = 2 of Lemma 3.3.

Lemma 3.6. For n ≥ 1 and ↔a1, . . . , ↔an ∈ B(A, A, A′′) we have

d(hn)(↔a1, . . . ,
↔
an) κ=

n−1∑
l=1

(−1)l hl(
↔
a1, . . . ,

↔
a l) · fn−l(

↔
a l+1, . . . ,

↔
an)

+
n∑

l=2

n−l∑
i=0

(−1)i+l(n−i−l) hn−l+1
(↔
a1, . . . , ml(

↔
ai+1, . . . ,

↔
ai+l), . . . ,

↔
an

)
.
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Proof. For n = 1 we just assert that h1 is a chain map. For n = 2 the claim is

d(h)(↔a1,
↔
a2) = m2(↔a1,

↔
a2) −↔a1 · f1(↔a2). (3.16)

To prove it, it is convenient to consider h as a map

A ⊗ B(k, A, A′′) ⊗ B(A, A, A′′) → B(A, A, A′′), (3.17)

where the domain is equipped with the tensor product differential d⊗. As in (2.18) we write the
twisting term in the correct differential d as λt. Using Lemma 3.2, one finds

(d h + h d⊗)(↔a1,
↔
a2) = h

(
λt(
↔
a1),↔a2

)
+ m2(↔a1,

↔
a2) −↔a1 · f1(↔a2), (3.18)

which gives the desired formula. The claim for n > 2 follows by induction, Lemma 3.5 and the
equivariance of hn with respect to the right A′′-action.

Remark 3.7. Assume A′′ = k. Then all bar elements in hk(←a1, . . . ,
←
ak) have length at least k−

1, so that
fk(←a1, . . . ,

←
ak) = f1(hk(←a1, . . . ,

←
ak)) (3.19)

vanishes for k > 1. Hence the first sum on the right-hand side of Lemma 3.6 reduces in this case
to the term for l = n − 1, which is

(−1)n−1 hn−1(←a1, . . . ,
←
an−1) ε(a′n) ε(an). (3.20)

3.3 Proof of the A∞-property. We are now ready to prove our first main result.

Theorem 3.8. The family (mn) defines an augmented A∞-structure on B(A′, A, A′′) with
unit 1A′ ⊗ 1B A ⊗ 1A′′ and augmentation ε(↔a) = ε(a′) ε(a) ε(a′′).

Note that for A′ = k this A∞-structure reduces to the Kadeishvili–Saneblidze dga structure
on B(k, A, A′′) since each hga operation Ek vanishes on k for k ≥ 1.

Proof. We first verify the A∞-condition (2.39). For the moment, let us assume the case n = 2
to hold and consider n ≥ 3. For the purpose of this proof, let us also consider mn as a map

mn : A′ ⊗ B(k, A, A′′) ⊗ B(A′, A, A′′)⊗(n−1) → A′ ⊗ B(k, A, A′′) (3.21)

where both the domain and the target have the tensor product differential d⊗. As before, we
denote both missing twisting terms by λt.

We then have

d⊗(mn)(↔a1, . . . ,
↔
an) (3.22a)

κ= a′1 d(E)
(
a

(1)
1 , S hn−1(←a

(1)
2 , . . . ,

←
a

(1)
n )

)
⊗
→
a

(2)
1 · · ·→a

(2)
n (3.22b)

− a′1 E
(
a

(1)
1 , d(S) hn−1(←a

(1)
2 , . . . ,

←
a

(1)
n )

)
⊗
→
a

(2)
1 · · ·→a

(2)
n (3.22c)

+ a′1 E
(
a

(1)
1 , S d(hn−1)(←a

(1)
2 , . . . ,

←
a

(1)
n )

)
⊗
→
a

(2)
1 · · ·→a

(2)
n . (3.22d)

Let us consider each of the three terms on the right-hand side separately.
We start with (3.22b). Lemmas 3.2 and 3.3 imply the identity
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∆ S hn−1(←a2, . . . ,
←
an) κ= 1 ⊗ S hn−1(←a2, . . . ,

←
an)

+
n−2∑
l=1

S hl(
←
a

(1)
2 , . . . ,

←
a

(1)
l+1) ⊗ a

(2)
2 · · ·a(2)

l+1 · S hn−1−l(
←
a l+2, . . . ,

←
an)

+ S hn−1(←a
(1)
2 , . . . ,

←
a

(1)
n ) ⊗ a

(2)
2 · · ·a(2)

n . (3.23)

Combining this with the twisting cochain condition (2.31), we can write (3.22b) as

κ= a′1 E(a(1)
1 , 1) E

(
a

(2)
1 , S hn−1(←a

(1)
2 , . . . ,

←
a

(1)
n )

)
⊗
→
a

(3)
1
→
a

(2)
2 · · ·→a

(2)
n

+
n−2∑
l=1

(−1)l E
(
a

(1)
1 , S hl(

←
a

(1)
2 , . . . ,

←
a

(1)
l+1)

)
· E

(
a

(2)
1 ,a

(2)
2 · · ·a(2)

l+1 · S hn−1−l(
←
a

(1)
l+2, . . . ,

↔
a

(1)
n )

)
⊗
→
a

(3)
1 · · ·→a

(3)
l+1
→
a

(2)
l+2 · · ·→a

(2)
n

+ (−1)1−n a′1 E
(
a

(1)
1 , S hn−1(←a

(1)
2 , . . . ,

←
a

(1)
n )

)
E(a(2)

1 ,a
(2)
2 · · ·a(2)

n )

⊗
→
a

(3)
1 · · ·→a

(3)
n

κ= a′1 t(a(1)
1 ) E

(
a

(2)
1 , S hn−1(←a

(1)
2 , . . . ,

←
a

(1)
n )

)
⊗
→
a

(3)
1
→
a

(2)
2 · · ·→a

(2)
n (3.24a)

+
n−1∑
l=2

(−1)l−1 E
(
a

(1)
1 , S hl−1(←a

(1)
2 , . . . ,

←
a

(1)
l+1)

)
(3.24b)

· E
(
a

(2)
1 · · ·a(2)

l , S hn−l(
←
a

(1)
l+1, . . . ,

↔
a

(1)
n )

)
⊗
→
a

(3)
1 · · ·→a

(3)
l
→
a

(2)
l+1 · · ·→a

(2)
n

+ (−1)1−n a′1 E
(
a

(1)
1 , S hn−1(←a

(1)
2 , . . . ,

←
a

(1)
n )

)
E(a(2)

1 ,a
(2)
2 · · ·a(2)

n ) (3.24c)

⊗
→
a

(3)
1 · · ·→a

(3)
n

As in the special case (3.13) of Lemma 3.2 we get for (3.22c) the term

κ= −a′1 E
(
a

(1)
1 , ε(a′2)a(1)

2 S hn−2(←a
(1)
3 , . . . ,

←
a

(1)
n )

)
⊗
→
a

(2)
1 · · ·→a

(2)
n (3.25a)

κ= −a′1 ε(a′2) E
(
a

(1)
1 · a(1)

2 , S hn−2(←a
(1)
3 , . . . ,

←
a

(1)
n )

)
⊗
→
a

(2)
1 · · ·→a

(2)
n . (3.25b)

By Lemma 3.6 and Remark 3.7 we have for (3.22d)

κ= (−1)n−1 E
(
a

(1)
1 , S hn−2(←a

(1)
2 , . . . ,

←
a

(1)
n−1) ε(a′n) ε(a(1)

n )
)
⊗
→
a

(2)
1 · · ·→a

(2)
n

+
n−1∑
l=2

n−1−l∑
i=0

(−1)i+l(n−1−i−l) a′1

· E
(
a

(1)
1 , S hn−l

(←
a

(1)
2 , . . . , ml(

←
a

(1)
i+2, . . . ,

←
a

(1)
i+1+l), . . . ,

←
a

(1)
n

))
⊗
→
a

(2)
1 · · ·→a

(2)
n

κ= (−1)n−1 E
(
a

(1)
1 , S hn−2(←a

(1)
2 , . . . ,

←
a

(1)
n−1)

)
ε(a′n)⊗→a

(2)
1 · · ·→a

(2)
n−1 ·→an (3.26a)

+
n−1∑
l=2

n−1−l∑
i=0

(−1)i+l(n−1−i−l) a′1 (3.26b)

· E
(
a

(1)
1 , S hn−l

(←
a

(1)
2 , . . . , ml(

←
a

(1)
i+2, . . . ,

←
a

(1)
i+1+l), . . . ,

←
a

(1)
n

))
⊗
→
a

(2)
1 · · ·→a

(2)
n .
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Putting everything together, we obtain

d⊗(mn)(↔a1, . . . ,
↔
an) κ=

(−1)2−n mn
(
λt(
↔
a1), . . . ,

↔
an

)
(3.27a)

− λt
(
mn(↔a1, . . . ,

↔
an)

)
(3.27b)

−
n−1∑
l=2

n−l∑
i=1

(−1)i+l(n−i−l) mn−l+1
(↔
a1, . . . , ml(

↔
ai+1, . . . ,

↔
ai+l), . . . ,

↔
an

)
(3.27c)

−
n−1∑
l=2

(−1)l(n−l) mn−l+1
(
ml(

↔
a1, . . . ,

↔
a l), . . . ,

↔
an

)
. (3.27d)

Here we have rewritten (3.24a) as (3.27a), (3.24c) as (3.27b) and (3.26b) as (3.27c). (3.27d),
which is the missing case i = 0 of (3.27c), essentially corresponds to (3.24b). However, for l = 2
we have subsumed the term (3.25b), in line with the separate definition (3.11) of m2. Similarly,
for l = n − 1 we have incorporated the term (3.26a) since n − l + 1 = 2 in this case. (If
l = n − 1 = 2, then both terms appear.)

To complete the proof for n ≥ 3, we replace the tensor product differentials by the twisted
differentials including the twisting terms λt,

d(mn) = d⊗(mn) + λt mn − (−1)2−n mn
(
λt ⊗ 1⊗(n−1)), (3.28)

to get the desired result.
For n = 2 we have to show that m2 is a chain map. This is already contained in [6], but

we can also do it quickly now: We can still express d⊗(m2) as before since the additional term
a′1 ε(a′2)⊗→a1 ·→a2 in (3.11) is a chain map with respect to the tensor product differentials. The
differential in (3.22d) vanishes for n = 2, the sums (3.24b) and (3.26b) are empty, and the
term (3.25a) becomes part of λt(m2(↔a1,

↔
a2)). Hence

d⊗(m2)(↔a1,
↔
a2) = m2

(
λt(
↔
a1
↔
a2)

)
− λt

(
m2(↔a1,

↔
a2)

)
, (3.29)

which shows that m2 is a chain map with respect to the twisted differentials.
We now turn to the claimed unit

↔
1 = 1⊗1⊗1 ∈ B(A′, A, A′′). It is a cocycle and a two-sided

identity for m2. Now assume n ≥ 3. Since S hn−1(←a2, . . . ,
←
an) has length at least 1, it follows

that mn(↔a1, . . . ,
↔
an) vanishes if ↔a1 =

↔
1 . By induction one can show that S hn−1(←a2, . . . ,

←
an)

vanishes if one of the arguments is the identity, hence so does mn. This proves that the A∞-
structure is strictly unital.

The map ↔a 7→ ε(↔a) = ε(a′) ε(→a) is a chain map and multiplicative with respect to m2.
For n ≥ 3, the image of mn lies in Ā′ ⊗ B(k, A, A′′) because elements in the image of S hn−1
have length at least 2. Hence ε vanishes on the image of mn for n ≥ 3. It therefore is a
strict morphism B(A′, A, A′′) → k, and it clearly send

↔
1 to 1 ∈ k. So ε is a augmentation

for B(A′, A, A′′), which completes the proof.

Remark 3.9. Assume that k is a principal ideal domain and that A and A′ (or A and A′′) as
well as their cohomologies are torsion-free over k. The base component m2 of the A∞-structure
on B(A′, A, A′′) is compatible with the filtration by the length of elements. Hence we obtain a
spectral sequence of algebras whose first page is

E1 = B
(
H∗(A′), H∗(A), H∗(A′′)

)
(3.30)
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by the Künneth theorem and our assumption of torsion-freeness. The product on this page is
the composition of the shuffle product (2.26) with the map

B
(
H∗(A′)⊗2, H∗(A)⊗2, H∗(A′′)⊗2)

→ B
(
H∗(A′), H∗(A), H∗(A′′)

)
(3.31)

induced by the multiplication maps for H∗(A), H∗(A′) and H∗(A′′), which are morphisms of
algebras because of graded commutativity. The reason that we get this product on E1 is that
all deformation terms involving the hga operations Ek with k ≥ 1 lower the filtration degree.

As a consequence, the second page of the spectral sequence is

E2 = TorH∗(A)
(
H∗(A′), H∗(A′′)

)
(3.32)

with the usual product.

3.4 The augmentation map. Assume that in addition to the triple (A′, A, A′′) considered
so far we have another hga Ã together with morphisms A′ → Ã and A′′ → Ã such that the
diagram

A A′

A′′ Ã

(3.33)

commutes. We would like to have an A∞-morphism B(A′, A, A′′) ⇒ Ã that extends the canonical
chain map

B(A′, A, A′′) → Ã a′ ⊗ a ⊗ a′′ 7→ a′ ε(a) a′′, (3.34)

where on the right-hand side both a′ and a′′ are considered as elements of Ã; compare the defi-
nition of f1 in (3.2). From the naturality of the A∞-structure on the two-sided bar construction
we immediately get a strict A∞-morphism

B(A′, A, A′′) ⇒ B(Ã, Ã, Ã). (3.35)

Se we can assume A = A′ = A′′ = Ã for our construction. In a slightly more general setting, we
have the following.

Proposition 3.10. The family (fn) defined in (3.8) constitutes an augmented A∞-morphism
f : B(A, A, A′′) ⇒ A′′. Hence the composition

B(A′, A, A′′) → B(Ã, Ã, Ã) f=⇒ Ã

is an augmented A∞-morphism extending the map B(A′, A, A′′) → Ã from (3.34).

By abuse of notation, we write this composition of maps again as f .

Proof. Applying the chain map f1 to both sides of the identity from Lemma 3.6 confirms that
we have an A∞-morphism f : B(A, A, A′′) ⇒ A′′. It satisfies

ε(f1(↔a)) = ε
(
a′ ε(a) a′′

)
= ε(a′) ε(→a) = ε(↔a) (3.36)

for ↔a ∈ B(A, A, A′′). The elements in the image of
→
b = S hn−1(↔a1, . . . ,

↔
an) have length at

least 1 for n ≥ 2, so that

ε(fn(↔a1, . . . ,
↔
an)) = ε(f1(a′1 ⊗→a1 ·

→
b )) = ε(a′) ε(→a) ε(

→
b ) (3.37)

vanishes. Hence the morphism f is augmented.
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4. The Eilenberg–Moore theorem

We write C∗(−) for normalized singular cochains and H∗(−) for singular cohomology, both
taken with coefficients in k. The augmentations on the cochain complexes are induced by the
inclusion of some chosen base points.

The Eilenberg–Moore theorem describes the cohomology of the pull-back Ẽ of a fibre bundle
or Serre fibration E → B along a map g : X → B,

Ẽ E

X B.

p̃

g̃

p

g

(4.1)

A homological version appeared in Eilenberg–Moore’s original article [9, Thm. 12.1] for sim-
ply connected B. For field coefficients, the coalgebra structure on H(Ẽ) was also described
there [9, Sec. 18]. Assuming field coefficients throughout, a cohomological version was given by
Smith [29, Sec. I.3]. It is largely reproduced by McCleary [24, Sec. 7.1 & 7.2].3 Instead of simple
connectedness, the version given by Gugenheim–May [18, Thm. 3.3, Cor. 3.5] only assumes the
fundamental group of B to operate trivially on the cohomology of the fibre of E → B. It also
allows more general rings than fields. In a homological setting, Gugenheim [17, Sec. 6.3] has
given a proof based on the twisted Eilenberg–Zilber theorem, see also [12, Prop. 8.3] for a similar
argument.

All approaches mentioned so far lead to a complex which is shown to be quasi-isomorphic to
the (co)chains on Ẽ. This is what we are interested in because we want to apply our Theorem 3.8.
There are also other, more geometric proofs of the Eilenberg–Moore theorem that lead directly
to a spectral sequence. See [24, Sec. 8.3] for a discussion.

Theorem 4.1. Let E → B be a Serre fibration with fibre F , and let Ẽ be the pull-back of E

via a map g : X → B. Assume the following: k is a principal ideal domain, all spaces and
maps are pointed, B and X are path-connected, π1(B) acts trivially on H∗(F ), and also one
of the following: H∗(F ) is degreewise finitely generated over k, or both H∗(B) and Hn(X) are
degreewise finitely generated over k. Then the morphism of augmented A∞-algebras

f : B
(
C∗(X), C∗(B), C∗(E)

)
⇒ C∗(Ẽ)

(where the target is an augmented dga) is a quasi-isomorphism.

Recall from Section 2.3.3 that B(C∗(X), C∗(B), C∗(E)) computes the differential torsion
product TorC∗(B)(C∗(X), C∗(E)) since the cochain algebra are torsion-free over the principal
ideal domain k.

3Note, however, that there is a mistake in the proof of the Eilenberg–Moore theorem in [24]: Contrary to what
is claimed in the proof of [24, Thm. 7.14], the filtrations on C∗(B) and C∗(E) are not compatible because a
(singular!) q-cochain on B may not vanish on the (q − 1)-skeleton of B. Presumably, the “Serre filtration” used
by Smith in the proof of [29, Prop. I.3.2] did not mean the filtration via skeleta, but Serre’s original one [28,
Sec. II.4] applied to singular simplices instead of cubes. This would be the same as the “geometric filtration”
of [9, Sec. 11].
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Proof. From (4.1) we get the commutative diagram of augmented dgas

C∗(Ẽ) C∗(E)

C∗(X) C∗(B).

g̃∗

p̃∗

g∗

p∗ (4.2)

By results of Gugenheim–May [18, Ch. 3], the chain map

f1 : B
(
C∗(X), C∗(B), C∗(E)

)
→ C∗(Ẽ)

is a quasi-isomorphism, see the discussion in the proof of [6, Thm. A.27]. According to Propo-
sition 3.10, f1 extends to the morphism f of augmented A∞-algebras.

Remark 4.2. As mentioned in the introduction, the mere existence of an A∞-structure on the
two-sided bar construction follows from standard techniques if one assumes field coefficients, and
likewise for the existence of an A∞-extension of the map f1 : B(C∗(X), C∗(B), C∗(E)) → C∗(Ẽ):
Since f1 is a homotopy equivalence in this case, cf. [7, Prop. II.4.3], one can transfer the dga
structure on C∗(Ẽ) to an A∞-structure on the two-sided bar construction and extend f1 to an
A∞-morphism, see [23]. The result depends on the chosen homotopy inverse k to f1 and on the
homotopy connecting f1k to the identity map on C∗(Ẽ). The drawbacks of this approach have
been pointed out in the introduction already.

Corollary 4.3. In addition to the hypotheses of Theorem 4.1 assume that the pull-back Ẽ is
simply connected. Then the cohomology of the iterated bar construction

B B
(
C∗(X), C∗(B), C∗(E)

)
is isomorphic to the cohomology of the loop space ΩẼ as a graded k-module.

Proof. The bar construction B C∗(Ẽ) computes the cohomology of ΩẼ. (This of course follows
from Theorem 4.1, applied to the path fibration of Ẽ.) We get a quasi-isomorphism between
this bar construction and the iterated one displayed above by applying B to the A∞-quasi-iso-
morphism f from Theorem 4.1. That B f is again a quasi-isomorphism can shown by the same
argument as for dga maps: The filtration of each bar construction by the length of elements
is exhaustive and leads to a cohomological spectral sequence in the left half-plane. The map
induced by B f between the first pages is an isomorphism, hence so is H∗(B f).

Remark 4.4. If A is a cdga, then so is its bar construction B A. Hence one can form the
n-th iterated bar construction Bn A for any n ≥ 0. Fresse has shown that one can extend the
functor A 7→ Bn A to the category of En-algebras, but not further [15, p. 751 & Thm. 5.5]. An
En-algebra is an algebra over a dg operad equivalent to the chain operad of little n-cubes. Since
hgas are a special kind of E2-algebras (cf. [2, §1.6.6]), Corollary 4.3 is in line with Fresse’s result.

5. More preliminaries

5.1 Shc algebras. Let A be an augmented dga. We say that A is a strongly homotopy
commutative (shc) algebra if the multiplication map µA : A ⊗ A → A extends to an A∞-
map Φ: A ⊗ A ⇒ A in the sense that Φ1 = µA. There are stronger definitions of an shc
algebra (see [10, Sec. 1]), but we will not need those.
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Assume that A is an hga. A natural shc structure Φhga on A was given in [10, Prop. 4.1] by
the formula

Φhga
n = (−1)n−1 ∑

j1+···+jn
=n−1

Φj (5.1)

where the sum is over all decompositions j = (j1, . . . , jn) of n − 1 into n non-negative integers
such that

∀ 1 ≤ s ≤ n j1 + · · · + js < s, (5.2)

and

Φj(a1 ⊗ b1, . . . , an ⊗ b2) κ= Ej1(a1; b1, . . . , bj1)
· Ej2(a2; bj1+1, . . . , bj1+j2) · · · Ejn(an; bn−jn , . . . , bn−1) bn (5.3)

for elements a1 ⊗ b1, . . . , an ⊗ bn ∈ A ⊗ A. The condition (5.2) means that the variables bj

appearing in an E-term in (5.3) together with a variable ai have indices j < i. It implies j1 = 0,
so that the leading factor in (5.3) is simply E0(a1) = a1.

As shown in [10, Prop. 4.3], this shc structure has the property that its composition with
the shuffle map (2.25),

B A ⊗ B A
∇−→ B(A ⊗ A) BΦhga

−−−−→ B A, (5.4)

is the product in B A corresponding to the hga structure on A.

Remark 5.1. In terms of this shc structure, the Carlson–Franz product m2 on a two-sided bar
construction B(A′, A, A′′) of hgas can be given as

m2 = B(Φhga, Φhga, Φhga) ∇, (5.5)

where B(Φhga, Φhga, Φhga) is a map of the form (2.47) and ∇ the shuffle map (2.26). This is in
fact its original definition of m2, see [6, eq. (A.3)]. The symmetry between A′ and A′′ in the
expression (5.5) is lost in the explicit formula (3.11) for m2. This is caused by the asymmetrical
nature of the condition (2.34) for the twisting cochain E, leading to an asymmetry between the
arguments of Φhga.

5.2 The transpose. We write the dual of a complex A as A∨ = Hom(A, k). If A is a (non-
negatively graded) homological complex, then A∨ is a (non-positively graded) cohomological
one. For example, the dual C(X)∨ of the normalized singular chain complex C(X) of a space X

is the normalized singular cochain complex C∗(X).
For any map f : A → B between complexes we define its transpose

f∗ : B∨ → A∨, f∗(β) = (−1)|f ||β| β f. (5.6)

Comparison with (2.2) shows
dC∨ = −(dC)∗. (5.7)

Given another map g : B → C, one has

(g f)∗ = (−1)|g||f | f∗g∗. (5.8)
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Moreover, for maps fi : Ai → Bi, i = 1, 2, the following diagram commutes:

B∨1 ⊗ B∨2 (B1 ⊗ B2)∨

A∨1 ⊗ A∨2 (A1 ⊗ A2)∨.

f∗
1⊗f∗

2 (f1⊗f2)∗ (5.9)

The dual C∨ of a (co-augmented) dgc C is an (augmented) dga with multiplication

µC∨ : C∨ ⊗ C∨ → (C ⊗ C)∨ ∆∗
−−→ C∨. (5.10)

Similarly, the transpose of a morphism f : C → D of (co-augmented) dgcs is a morphism of
(augmented) dgas.

We fix the isomorphism of complexes (s−1A)∨ ∼= sA∨ that makes the diagram

(s−1A)∨ sA∨

A∨

∼=

(s−1)∗ s−1
(5.11)

commute. Under this isomorphism we have

(s−1
A )∗ = s−1

A∨ and (sA)∗ = −sA∨ (5.12)

where the second identity follows from (5.8). (In particular, it is not possible to have a “+” in
both equations.) This choice of signs will be important in what follows.

5.3 The cobar construction. Let C be a coaugmented dgc with augmentation ideal C̄.
The decomposition C = C̄ ⊕ k gives a canonical projection π = πC : C ↠ C̄ besides the
inclusion η = ηC : C̄ ↪→ C.

The cobar construction of C is the augmented dga

Ω C =
⊕
k≥0

Ωk C with Ωk C = (s−1C̄)⊗k ; (5.13)

elements of Ωk C are written in the form ⟨c1| . . . |ck⟩. Multiplication is concatenation of elements;
the unit element is ⟨⟩ = 1 ∈ Ω0 C = k. The augmentation ε : Ω C → k is the identity
on Ω0 C = k and zero on the components Ωk C with k > 0.

The differential on Ω C is the unique derivation given on Ω1 C by

d⟨c⟩ = −⟨dc⟩ + (s−1 ⊗ s−1) ∆̄ c (5.14)

where
∆̄ : C̄ ↪→ C

∆−→ C ⊗ C ↠ C̄ ⊗ C̄ (5.15)

is the reduced diagonal.
The canonical map

B(C∨) → (Ω C)∨ (5.16)

given by the component maps

Bk(C∨) = (s C̄∨)⊗k ∼=
(
(s−1C̄)∨

)⊗k →
(
(s−1C̄)⊗k)∨ = (Ωk C)∨ (5.17)
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is a morphism of coaugmented dgcs. To see that we get a chain map, we note that by (5.8), (5.9)
and (5.12) we have(

(s−1 ⊗ s−1) ∆̄ s
)∗ = s∗ ∆̄∗

(
(s−1)∗ ⊗ (s−1)∗

)
= −s µ̄ (s−1 ⊗ s−1), (5.18)

where µ̄ : : C̄∨ ⊗ C̄∨ → C̄∨ denotes the reduced multiplication map of the augmented dga C∨.
This expression is the negative of the part B2C∨ → B1C∨ of the differential on BC∨, as required
by the identity (5.7).

5.4 A∞-morphisms between dgcs. Let C and D be coaugmented dgcs, and let

G : Ω C → Ω D (5.19)

be a morphism of augmented dgas. This morphism is determined by the maps

gn : C
π
↠ C̄

s−1
−−→ s−1C̄ = Ω1 C ↪→ Ω C

G−→ Ω D ↠ Ωn D = (s−1D̄)⊗n s⊗n

−−→ D̄⊗n η⊗n

−−→ D⊗n (5.20)

of degree n − 1 for n ≥ 2. The map g1 : C → D is defined analogously, but with the map
ιD εC : C → D added,

g1(c) = s G(⟨c̄⟩) + ιD εC(c). (5.21)

Together this family of maps forms an A∞-coalgebra morphism g : C ⇒ D, and we write G

as Ω g : Ω C → Ω D.
The components of g satisfy the identity

d(gn) =
n−1∑
i=1

(−1)i (gi ⊗ gn−i) ∆ +
n−2∑
i=1

(−1)i (
1⊗i ⊗ ∆ ⊗ 1n−i−2)

gn−1 (5.22)

for all n ≥ 1. Moreover, g1(1C) = 1D and g1(C̄) ⊂ D̄. For n ≥ 2 we have gn(1C) = 0 and the
image of gn lies in C̄⊗n ⊂ C⊗n. Since Ω C is the direct sum of the terms Ωk C, we also have
that for any c ∈ C only finitely many terms gn(c) are non-zero. Conversely, any family of maps

gn : C → D⊗n (5.23)

of degree n − 1 for n ≥ 1 having these properties defines an A∞-coalgebra morphism g : C ⇒ D.
Given an A∞-coalgebra morphism g : C ⇒ D, the transposes

(gn)∗ =
(
η⊗n s⊗n Ω g s−1 π

)∗ = (−1)n π∗ (s−1)∗ (Ω g)∗ (s⊗n)∗ (η∗)⊗n (5.24)
= ηC∨ s−1 (Ω g)∗ s⊗n (πD∨)⊗n

of the components of g are the components (g∗)n of a strictly unital A∞-algebra morphism
g∗ : D∨ ⇒ C∨. (Here we are again using the formulas (5.8), (5.9) and (5.12), and we have
omitted the separate definition for n = 1.) Moreover, we obtain a commutative diagram

B(D∨) (Ω D)∨

B(C∨) (Ω C)∨.

B(g∗) (Ω g)∗ (5.25)

In analogy with the algebra case, we define an shc coalgebra structure on a coaugmented
dgc C to be an A∞-coalgebra map

Ψ: C ⇒ C ⊗ C (5.26)

whose base component Ψ1 : C → C ⊗ C is the diagonal of C.
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5.5 Homotopy Gerstenhaber coalgebras. Let C be a coaugmented dgc and assume that
the augmented dga Ω C has the structure of a dg bialgebra, that is, comes with a diagonal

∆Ω C : Ω C → Ω C ⊗ Ω C (5.27)

that is compatible with the dga structure and the augmentation. It is determined by its associ-
ated twisting cochain

E : C ↠ C̄
s−1
−−→ s−1C̄ = Ω1 C

∆Ω C−−−→ Ω C ⊗ Ω C, (5.28)

which in turn in determined by its compositions with

ρkl : Ω C ⊗ Ω C ↠ Ωk C ⊗ Ωl C = (s−1C̄)⊗k ⊗ (s−1C̄)⊗l

s⊗(k+l)
−−−−→ C̄⊗(k+l) ↪→ C⊗(k+l). (5.29)

for k, l ≥ 0. We call C a homotopy Gerstenhaber coalgebra (hgc) if the composition Ekl = ρkl E
vanishes unless (k, l) = (0, 1) or k = 1. One always has E01(c) = E10(c) = c̄. For any k ≥ 0 we
define the homotopy Gerstenhaber cooperation

Ek : C → C ⊗ C⊗k, Ek(c) =

E1k(c) if k > 0.
c if k = 0.

(5.30)

Their transposes define an hga structure on C∨, cf. [14, Rem. 3.2].

5.6 Simplicial sets. The normalized chain complex C(X) of any simplicial set X is naturally
an hgc, for any coaugmentation ι : k → C(X). This includes the normalized singular chain
complexes of topological spaces. It is convenient to define the hgc operations in terms of interval
cut operations, which we briefly recall first. See [2, Secs. 1.2, 2.2] for a comprehensive treatment.

We call [i, j] = {i, i + 1, . . . , j} with 0 ≤ i ≤ j an interval and write [j] = [1, j]. Let
u : [r + k] → [r] be a surjection, r ≥ 0, k ≥ 0. We assume u to be non-degenerate in the sense
that u(t) ̸= u(t + 1) for all 1 ≤ t < r + k. The associated interval cut operation for a simplicial
set X,

AWu : C(X) → C(X)⊗r, x 7→ AWu(x), (5.31)

is of degree k and defined as follows. Let x ∈ X be a simplex of dimension m. For a subdivision

0 = m0 ≤ m1 ≤ · · · ≤ mn+k = m (5.32)

of the interval [0, m], we define the simplex xj ∈ X with 1 ≤ j ≤ r to be the restriction of x to
the concatenation of all intervals [mt, mt+1] with label u(t) = j. (If in this concatenation the
right endpoint of one interval coincided with the left endpoint of the next interval, then this
common endpoint is repeated, forcing the resulting simplex to be degenerate.) Then

AWu(x) =
∑

±x1 ⊗ · · · ⊗ xr (5.33)

where the sum is over all such decompositions. The sign left unspecified above is the product
of a permutation sign and a position sign, see [2, §2.2.4] for details.

In this language, the hgc cooperations are given by the interval cut operations

Ek = AW(1,2,1,3,1,...,1,k+1,1), (5.34)
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and their transposes (Ek)∗ are the operations Ek for the hga C∗(X), cf. [12, Sec. 8.2]. Note that
when applying Ek to a simplex, the intervals labelled 2, . . . , k + 1 must have length at least 1
for otherwise the simplex corresponding to the label 1 would be degenerate. Hence Ek vanishes
on (normalized) chains of degree < k.

Let us write µ(n) and ∆(n) for the n-fold iteration of the product and coproduct, respectively.
Since Φj is, up to a reordering of the tensor factors in the argument, equal to

µ(n+1)(Ej1 ⊗ · · · ⊗ Ejn ⊗ 1
)
, (5.35)

we have Φj = AW ∗
u(j) for the surjection

u(j) = (v1, w1, v1, . . . , v1, wj1 , v1,

v2, wj1+1, v2, . . . , v2, wj1+j2 , v2,

. . . , vn, wn−jn , vn, . . . , vn, wn−1, vn, wn) (5.36)

of length 3n − 1 and degree n − 1, where we have set vt = 2t − 1 and wt = 2t for 1 ≤ t ≤ n. For
example,

u((0, 0, 2, 1)) = (1, 3, 5, 2, 5, 4, 5, 7, 6, 7, 8). (5.37)

Hence, if we define

Ψhgc
n = (−1)n−1 ∑

j1+···+jn
=n−1

Ψj with Ψj = AWu(j), (5.38)

we have
Φj = Ψ∗j and Φhga

n = (Ψhgc
n )∗. (5.39)

As remarked above, the surjection u(j) associated to a decomposition j of n−1 has degree n−1.
This implies that Ψj vanishes on simplices of degree < n − 1, and so does Ψhgc

n . The maps Ψhgc
n

therefore assemble to an shc coalgebra structure

Ψhgc : C(X) ⇒ C(X) ⊗ C(X) (5.40)

whose dual is the A∞-algebra structure Φhga on the hga C∨ given by (5.3).4 (If Ψhgc were not
an A∞-coalgebra map, then its transpose would fail to be an A∞-algebra map because sending
a map between free complexes to its transpose is injective.)

5.7 Shc structures via contractions. Let C and D be complexes. A contraction is a
triple (f, g, h),

C
g

⇆
f

D ⟲ h (5.41)

where f : C → D and g : D → C are chain maps and h : D → D a homotopy such that

g f = 1C , d(h) = f g − 1D h f = 0, g h = 0, h h = 0. (5.42)

The latter three identities are often called “side conditions”.
4Defining Ψj directly in terms of the hga cooperations gives an A∞-coalgebra structure on any hgc if one assume
that Ek(c) vanishes for |c| < k. The proof is analogous to the hga case carried out in [10, Prop. 4.1].
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Now assume additionally that C and D are coaugmented dgcs and f a morphism between
them. In this setting, Gugenheim–Munkholm [19, Thm 4.1∗] have given a recursive formula for
an A∞-coalgebra map G : D ⇒ C extending g, that is, with

G1 = g. (5.43)

Their recursive formula for n ≥ 2 is5

Gn = −
n−1∑
l=1

(−1)n−l (Gl ⊗ Gn−l) ∆D h. (5.44)

Stated in this generality, one needs to assume that the finiteness condition for A∞-coalgebra
maps holds, meaning that for each d ∈ D, Gn(d) vanishes for large enough n. In addition to
extending g, the A∞-coalgebra map G is a homotopy inverse to f . More precisely, Gugenheim–
Munkholm show that

f ◦ G = 1C (5.45)

holds and that G ◦ f is homotopic to 1D via an explicit A∞-coalgebra homotopy having certain
additional properties. In what follows, we will only need (5.45).

The Gugenheim–Munkholm construction applies in particular to the Eilenberg–Zilber con-
traction

C(X) ⊗ C(Y )
AW
⇆
∇

C(X × Y ) ⟲ h (5.46)

for two spaces or simplicial sets X and Y . Here f = ∇ is the shuffle map, g = AW the
Alexander–Whitney map and h the Eilenberg–Mac Lane homotopy, see for instance [11, Sec. 3].
In fact, there are two canonical homotopies one can use. One is the original one recursively
defined by Eilenberg–Mac Lane [8, eqs. (2.13)]; a non-recursive definition was much later given
by Rubio and Morace [26, Sec. 3.1]. An equally good choice is the “opposite” homotopy that
exchanges the roles of X and Y and also those of front on back faces of simplices, see [26,
Sec. 3.3], [11, Sec. 4]. We are going to use this opposite homotopy, which is defined by

h(x, y) =
∑

0≤p+q<n
(α,β)⊢(p,q+1)

(−1)p+q+(α,β) (
sβ ∂p+q

p+1 x, sp+q+1 sα ∂p−1
0 y

)
(5.47)

for (x, y) in Xn × Yn, cf. [11, eq. (4.8)]. Here (α, β) ⊢ (p, q + 1) means that (α, β) is a (p, q + 1)-
shuffle, that is, a partition of the set {0, . . . , p + q} with p elements in α and q + 1 in β. Its
signature is denoted by (−1)(α,β). Moreover,

sα = sαp ◦ · · · ◦ sα1 (5.48)

for α = {α1 < · · · < αp} is a repeated degeneracy operator and

∂j
i = ∂i ◦ · · · ◦ ∂j (5.49)

for j ≤ i − 1 a repeated face operator. Note that s∅ and ∂i−1
i are identity maps.

In the context of the Eilenberg–Zilber contraction we write the A∞-coalgebra map defined
by (5.44) as

G = GX,Y : C(X × Y ) ⇒ C(X) ⊗ C(Y ). (5.50)

That the finiteness condition holds in this case will be a consequence of our proof of Theorem 6.1
in the next section.
5The sign (−1)n−1 in (5.44) is implicit in the formula given in [19, p. 26] because the map F̄p there is, in our
notation, a map to (s−1C̄)⊗p of degree −1 , not one to C̄⊗p of degree p − 1.
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6. Comparison of the two shc structures on cochains

Let ∆ = ∆X : X → X × X be the diagonal. Since the composition

C∗(X) ⊗ C∗(X) →
(
C(X) ⊗ C(X)

)∨ AW ∗
−−−→ C∗(X × X) ∆∗

−−→ C∗(X) (6.1)

is the definition of the cup product in C∗(X), we conclude that the transpose G∗X,X of Gugen-
heim–Munkholm’s A∞-coalgebra map (5.50) defines an shc algebra structure ΦGM = ΦGM

X

on C∗(X) via the composition6

ΦGM
X : C∗(X) ⊗ C∗(X) →

(
C(X) ⊗ C(X)

)∨ G∗
X,X====⇒ C∗(X × X) ∆∗

−−→ C∗(X). (6.2)

(No finiteness condition is needed for cochains, see [19, §4.1∗].)

Theorem 6.1. Given any simplicial set X, the shc structure on C∗(X) due to Gugenheim–
Munkholm (with homotopy (5.47)) and the one for general hgas agree,

ΦGM = Φhga : C∗(X) ⊗ C∗(X) ⇒ C∗(X). (6.3)

Corollary 6.2. The composition

B C∗(X) ⊗ B C∗(X) ∇−→ B
(
C∗(X) ⊗ C∗(X)

) ΦGM
−−−→ B C∗(X × X) B ∆∗

−−−→ B C∗(X)

is the multiplication on B C∗(X) given by the hga structure of C∗(X).

For a 1-reduced simplicial set X, this latter result was established by Hess–Parent–Scott–
Tonks [20, Sec. 5], as least in characteristic 2.7

The remainder of this section is devoted to a proof of Theorem 6.1. We will deduce the claim
from the equivalent identity

G∗X,Y = Φhga
X×Y ◦

(
p∗X ⊗ p∗Y ) : C∗(X) ⊗ C∗(Y ) ⇒ C∗(X × Y ) (6.4)

for all simplicial sets X, Y , or rather from the homological identity
GX,Y = (pX ⊗ pY ) ◦ Ψhgc

X×Y : C(X × Y ) ⇒ C(X) ⊗ C(Y ) (6.5)

of which it is the transpose.
Let m ≥ 0. For a partition (α, β) ⊢ (p, q + 1) with p, q ∈ [0, m] we define

hα,β : Xm−q × Ym−p → Cm+1(X × Y ), (6.6)
(x, y) 7→ (sβ x, sp+q+1 sα y)

so that
h(x, y) =

∑
0≤p+q<m

(α,β)⊢(p,q+1)

(−1)p+q+(α,β) hα,β

(
∂p+q

p+1 x, ∂p−1
0 y

)
(6.7)

for (x, y) ∈ Xm × Ym. We also write

G̃n = (pX ⊗ pY )⊗n Ψhgc
n : C(X × Y ) →

(
C(X) ⊗ C(Y )

)⊗n
. (6.8)

6 The same construction appears in Munkholm’s separate work [25, Prop. 4.7], based on the transpose of the
recursive formula (5.44), cf. the proof of [25, Prop. 2.2]. Note that the homotopy in Munkholm’s cohomological
contraction (called a ‘trivialized extension’) is −h∗ in our notation.
7All signs are ignored in [20, Sec. 5] “in the interest of simplifying the notation” [20, p. 870].
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for n ≥ 1. Translating the identity (6.5) to this notation, we want to prove

Gn = G̃n (6.9)

for all n ≥ 1. Because the components of Ψhgc satisfy the finiteness condition for A∞-coalgebra
maps, the identity (6.9), once established, will in particular show that the family Gn also satisfies
this condition and therefore defines an A∞-coalgebra map, as asserted in Section 5.7.

We introduce some more notation and terminology. Let (α, β) be a (p, q + 1)-shuffle. Then
β ̸= ∅, and it can be decomposed into intervals, that is, written as a disjoint union of r ≥
1 intervals

β = [i1, j1] ∪ [i2, j2] ∪ · · · ∪ [ir, jr], (6.10)

where
0 ≤ i1 < j1 + 1 < i2 < j2 + 1 < · · · < ir < jr + 1 ≤ p + q + 1. (6.11)

Let x be an m-simplex, and let J ⊂ [0, m] be non-empty. We write x(J) for the restriction
of x to J , that is, for ∂ik

. . . ∂i1x where {i1 < · · · < ik} = [0, m] \ J . If J = [i, j] is an interval,
we simply write x[i, j]. Moreover, we say that x is degenerate on the interval [i, j + 1] if there
is a simplex x̃ such that x = s[i,j]x̃. (This condition is defined to be void for i = j + 1.)

The following result is related to [20, Thm. 5.1, Lemma 5.4].

Lemma 6.3. Let m ≥ 0, and let (α, β) ⊢ (p, q + 1) with p, q ∈ [0, m]. For any (x, y) ∈
Xm−q × Ym−p and any n ≥ 1 we have the following:
(i) For any 1 < k < n,

(G̃k ⊗ 1) ∆ hα,β(x, y) = 0.

(ii) If β is not an interval, then

(AW ⊗ G̃n−1) ∆ hα,β(x, y) = 0.

(iii) If β = [i, i + q] is an interval, then

(AW ⊗ G̃n−1) ∆ hα,β(x, y) = (−1)n(i+q+1) (
x[0, i] ⊗ y[0, q + 1]

)
⊗ G̃n−1

(
x[i, m − q], s[0,p−i] y[q + 1, m − p]

)
.

Proof. Applying the diagonal to the (m + 1)-simplex z = hα,β(x, y) gives

∆z =
m+1∑
l=0

z[0, l] ⊗ z[l, m + 1]. (6.12)

For each of the three claims we will look at each individual summand corresponding to some
value 0 ≤ l ≤ m + 1.

(i): We consider the term

±
(
(pX ⊗ pY )⊗k Ψj(z[0, l])

)
⊗z[l, m + 1]

∈
(
C(X) ⊗ C(Y )

)⊗k ⊗ C(X × Y ), (6.13)

appearing in (G̃k ⊗ 1) ∆ z, where j is a decomposition of k − 1. From the identity Ψj = AWu(j)
and the specific form of u(j) given in (5.36) we know that all components in the k factors lying
in C(Y ) have degree at least 1.
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Let [i1, j1] be the first interval of β. Then pY (z) is degenerate on [0, i1]. For l ≤ i1 all
components lying in the factors C(Y ) are therefore degenerate in (6.13), forcing Gk(z[0, l]) = 0.

In the case l > i1, let [lt, lt+1] be the interval for the component in the first factor C(Y ) for
a fixed interval cut

0 = l0 ≤ l1 ≤ · · · ≤ l3k−1 = l (6.14)

of the interval [0, l]. As mentioned above, we can assume lt < lt+1. In fact, we must have
i1 = lt < lt+1 ≤ j1 + 1 since pX(z) is degenerate on [i1, j1 + 1]. But this implies that in (6.13)
the component in some factor C(X) is of the form pX(z(J)) with lt, lt+1 ∈ J . Since pX(z) is
degenerate on [lt, lt+1], this restriction pX(z(J)) is degenerate.

(ii): By assumption, β has at least two intervals [i1, j1] and [i2, j2].
If l > j1 + 1, then pX(z) is degenerate on [i1, j1 + 1] while pY (z) is degenerate on [j1 + 1, i2].

This implies that there is no way to divide z[0, l] into a front face z[0, l′] and a back face z[l′, l]
such that both pX(z[0, l′]) and pY (z[l′, l]) are non-degenerate. Hence AW (z[0, l]) = 0.

So assume l ≤ j1 + 1. Then pX(z) is degenerate on [i2, j2 + 1], and pY (z) is degenerate
on [p + q + 1, p + q + 2] where j2 + 1 ≤ p + q + 1. Hence if n = 2, we get

Gn−1(z[l, m + 1]) = AW (z[l, m + 1]) = 0 (6.15)

by reasoning as before. If n ≥ 3, then for

Gn−1(z[l, m + 1]) ∈
(
C(X) ⊗ C(Y )

)⊗(n−1) (6.16)

to be non-zero, some component in one of the tensor factors C(Y ) must be of the form pY (z[i2,

j2 + 1]). But then some component in one of the tensor factors C(X) is of the form pX(z(J))
with i2, j2 + 1 ∈ J . As before, this restricted simplex is degenerate because pX(z) is degenerate
on the interval [i2, j2 + 1].

(iii): By assumption, pX(z) is degenerate on [i, i+q+1], and so is pY (z) on [i+q+1, p+q+2].
Hence in (6.12) we must have l ≤ i + q + 1. Assume l < i + q + 1 and set t = max(l, i).
Then pX(z) is degenerate on [t, i + q + 1] while pY (z) is degenerate on [l, t] and on [i + q + 1,

p + q + 2]. Hence for (6.16) to be non-zero, the component in the first tensor factor C(Y ) has
to be pY (z[t, i + q + 1]). But then the component in some tensor factor C(X) must be of the
form pX(z(J)) with t, i + q + 1 ∈ J , hence degenerate.

This shows that l = i + q + 1 is the only value with a non-zero contribution. The claim now
follows from the formula (6.6) for z = hα,β(x, y) and the identity

AW (z[0, l]) = pX(z[0, i]) ⊗ pY (z[i, i + q + 1]). (6.17)

by applying the appropriate face operators.

We finally show (6.9) by induction on n. The identity holds for n = 1 since both

G̃1 = (pX ⊗ pY ) Ψ1 = (pX ⊗ pY ) (E0 ⊗ 1) ∆(2) = (pX ⊗ pY ) ∆ (6.18)

and G1 are equal to the Alexander–Whitney map AW .
Now assume the claim to hold for all 1 ≤ k < n, and consider (x, y) ∈ Xm × Ym for

some m ≥ 0. By the definition (5.44) of Gn, induction and Lemma 6.3 we have

Gn(x, y) = −
n−1∑
l=1

(−1)n−l (Gl ⊗ Gn−l) ∆ h(x, y) (6.19)
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= −
n−1∑
l=1

(−1)n−l (G̃l ⊗ G̃n−l) ∆ h(x, y)

=
∑

0≤p+q<m
(α,β)⊢(p,q+1)

(−1)p+q+(α,β) (AW ⊗ G̃n−1) ∆ hα,β

(
∂p+q

p+1 x, ∂p−1
0 y

)
,

where the last sum only extends over partitions (α, β) where β = (i, . . . , i + q) is an interval for
some 0 ≤ i ≤ p.

Let us look at an individual term

(−1)n+p+q+(α,β) (AW ⊗ G̃n−1) ∆ hα,β

(
∂p+q

p+1 x, ∂p−1
0 y

)
= (−1)ε (

x[0, i] ⊗ y[p, p + q + 1]
)

⊗ G̃n−1(x̃, ỹ). (6.20)

Here

x̃ = x(i . . . p, p + q + 1 . . . m), (6.21)
ỹ = s[0,p−i] y(p + q + 1 . . . m) (6.22)

are simplices of dimension m′ = m − i − q + 1, and
ε = p + q + (p − i)(q + 1) + n(i + q). (6.23)

Consider a fixed decomposition j′ = (j′1, . . . , j′n−1) of n − 2 appearing in

G̃n−1(x̃, ỹ) = (−1)n−2 (pX ⊗ pY )⊗(n−1) ∑
j′

Ψj′(x̃, ỹ) (6.24)

and a fixed cut
0 = m′0 ≤ m′1 ≤ · · · ≤ m′3(n−1)−1 = m′ (6.25)

of [0, m − i − q + 1] into 2(n − 1) intervals. These choices lead to a tensor product of simplices(
a((1)) ⊗ b((1))) ⊗ · · · ⊗

(
a((n−1)) ⊗ b((n−1))) ∈ (C(X) ⊗ C(Y ))⊗(n−1). (6.26)

The effect of the degeneracy operator s[0,p−i] in the formula for ỹ is that in order to obtain a non-
degenerate simplex b((1)), the simplex ỹ cannot be restricted to an interval that overlaps with the
interval [0, p − i + 1]. Hence this latter interval is completely covered by intervals corresponding
to terms a((t)) or, in other words, intervals with odd labels vt from the surjection u(j′) given
by (5.36).

Suppose that the interval containing [p − i, p − i + 1] has label vt = 2t − 1 in u(j′). This
implies j′1 = · · · = j′t−1 = 0 because the corresponding odd labels < 2t − 1 cannot enclose any
even label. Moreover,(

x[0, i] ⊗ y[p, p + q + 1]
)

⊗
(
a((1)) ⊗ b((1))) ⊗ · · · ⊗

(
a((n−1)) ⊗ b((n−1))) (6.27)

is a term appearing in (pX ⊗ pY )⊗n Ψj(x, y), hence in G̃n(x, y), for

j = (0, . . . , 0︸ ︷︷ ︸
t times

, j′t + 1, j′t+1, . . . , j′n−1), (6.28)

namely for the interval cut

0 = m0 ≤ m1 = i ≤ m2 = m′1 + i ≤ · · · ≤ mt = m′t−1 + i ≤ mt+1 = p

≤ mt+2 = p + q + 1 ≤ mt+3 = m′t ≤ · · · ≤ m3n−1 = m′3(n−1)−1 = m′. (6.29)

Conversely, by reversing this process we see that for fixed p, q and i all terms (6.27) arise this
way from some j′ and some interval cut of [0, m′].
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Let us compare the signs. In addition to (6.24) we have

G̃n = (−1)n−1 (pX ⊗ pY )⊗n
∑
j

Ψj . (6.30)

We again focus on fixed values p, q and i and a fixed decomposition j′ of n − 2 together with a
fixed interval cut, giving an interval cut for a decomposition j of n − 1 as before.

The simplex b((1)), which is the first component in C(Y ), does not show up in j′. In j, it
produces a permutation sign since the corresponding (final) interval has to be moved past all
intervals between vertices i and p. These intervals are all final except for the last one since the
two intervals enclosing the one labelled w1 = 2 have the same (odd) label. Hence the change in
the permutation sign exponent is

∆εperm = (p − i + 1)(q + 1) = (p − i)(q + 1) + q + 1. (6.31)

As far as changes in the positional signs are concerned, there are two kinds of contributions.
Recall that only inner intervals contribute to the positional sign. There are n − 1 inner intervals
in j and n−2 in j′. The first inner interval in j comes right before the interval with labelled w1 =
2 (hence ending at vertex p), and it disappears when passing to j′. The others bijectively
correspond to the inner intervals in j′, but they are shifted i+q positions to the left. The reason
is that the vertex p + q + 1 in (x, y) corresponds to the vertex p − i + 1 in (x̃, ỹ), and these inner
intervals appear past these vertices. Hence the change in the positional sign exponent is

∆εpos = p + (i + q)(n − 2) ≡ p + n(i + q) (mod 2). (6.32)

Adding up the sign changes (including the one between (6.24) and (6.30)), we get

ε = ∆εperm + ∆εpos − 1 (6.33)

Hence

Gn(x, y) = (−1)n (AW ⊗ G̃n−1) ∆ h(x, y) = G̃n(x, y), (6.34)

which completes the proof of Theorem 6.1.

7. Comparison of the two products on Tor

As discussed in Remark 3.9, the A∞-structure on the two-sided bar construction induces, under
certain assumptions, the canonical product on the second page of the associated Eilenberg–
Moore spectral sequence. The question remains whether the new product on the differential
torsion product agrees with the “original” one defined previously by Smith [29] by dualizing the
construction of Eilenberg–Moore [9, Sec. 18]. This is necessarily the case in the situation of the
Eilenberg–Moore Theorem 4.1 since for both products we have a multiplicative isomorphism
with H∗(Ẽ).

Let us assume that k is a principal ideal domain. Recall from [29, Prop. I.3.4] or [24,
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Prop. 7.17] that the original product is defined via the maps8

TorC∗(B)
(
C∗(X), C∗(E)

)
⊗ TorC∗(B)

(
C∗(X), C∗(E)

)
TorC∗(B)⊗C∗(B)

(
C∗(X) ⊗ C∗(X), C∗(E) ⊗ C∗(E)

)
Tor(C(B)⊗C(B))∨

(
(C(X) ⊗ C(X))∨, (C(E) ⊗ C(E))∨

)
TorC∗(B×B)

(
C∗(X × X), C∗(E × E)

)
TorC∗(B)

(
C∗(X), C∗(E)

)
.

∇

Torj(j,j)

Tor∇∗ (∇∗,∇∗)∼=

Tor∆∗ (∆∗,∆∗)

(7.1)

The top arrow is the shuffle map (2.26) in cohomology. The map ∇∗ appearing in the third
arrow is induced by the transpose of the shuffle map (5.46) (with X = Y , and analogously for B

and E). This shuffle map is a quasi-isomorphism of dgcs and ∇∗ therefore one of dgas, which
implies that Tor∇∗(∇∗, ∇∗) is an isomorphism, see [18, Cor. 1.8, proof of Cor. 3.5]. Moreover, j

denotes the canonical chain map

C∗(X) ⊗ C∗(X) →
(
C(X) ⊗ C(X)

)∨
. (7.2)

Theorem 7.1. Let B, X and E be simplicial sets, and let k be a principal ideal domain. The
product (7.1) on TorC∗(B)

(
C∗(X), C∗(E) agrees with the one induced by the A∞-structure on

B(C∗(X), C∗(B), C∗(E) defined in Section 3 or, in other words, by the Carlson–Franz prod-
uct m2.

As mentioned in the introduction, this result has independently been obtained by Carlson [5].

Proof. We assume k to be a principal ideal domain only to ensure that the cohomology of the
two-sided bar construction is indeed the stated torsion product.

As before, G denotes the Gugenheim–Munkholm shc map for the Eilenberg–Zilber contrac-
tion. From the transpose

∇∗ ◦ G∗ = 1 (7.3)

of the identity (5.45) (with f = ∇) we deduce

Tor∇∗(∇∗, ∇∗)−1 = TorG∗(G∗, G∗). (7.4)

Together with the definition of m2 recalled in Remark 5.1, the definition (6.2) of ΦGM and
Theorem 6.1 we obtain for the Carlson–Franz multiplication on the differential torsion product

H∗(m2) = TorΦhga(Φhga, Φhga) ∇ = TorΦGM(ΦGM, ΦGM) ∇ (7.5)
= Tor∆∗(∆∗, ∆∗) TorG∗(G∗, G∗) Torj(j, j) ∇
= Tor∆∗(∆∗, ∆∗) Tor∇∗(∇∗, ∇∗)−1 Torj(j, j) ∇,

which is the composition displayed in (7.1).
8The map Torj(j, j) is missing in [29].
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