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Abstract

The spaces of configurations of non-k-overlapping discs have been studied as a bimodule over the
little discs operad. In fact, the spaces form a filtered operad. We define and study the induced
structure on the homology.
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1. Introduction

Let Md(n) be the configuration space of n distinct, labeled points in Rd. We can impose a
non − k − equal condition such that no k coincide. We denote this space by M(k)

d (n). These
spaces were first introduce and studied by Bjorner and Welker. They computed their homology
in [4]. The symmetric group action was understood by Sundaram-Wachs [17]. These spaces
were objects of recent research, see [3, 9, 11–13]. More general configuration spaces were studied
in [6]. Let Bd denote the little d-discs operad, where Bd(n) is the configuration space of n

open, labeled, disjoint discs inside the unit disc. Equivalently, Bd(n) = sEmb

(⊔
n
Dd, Dd

)
, the

space of special embeddings,
⊔
n
Dd ↪→ Dd given on each component by translation and rescaling

only. We can impose a non − k − overlapping condition on a configuration of discs where no
k discs share a common point. Denote this new space by B(k)

d (n). One can view B(k)
d (n) as

a space sImm(k)

(⊔
n
Dd, Dd

)
, the space of non-k-overlapping special immersions,

⊔
n
Dd ↬ Dd

given on each component by translation and rescaling only. There is a homotopy equivalence
B(k)
d (n) → M(k)

d (n) by taking the center of each disc [12, Proposition 2.3.1]. In this paper we
will mainly use B(k)

d since it gives us more structure, however M(k)
d is more useful when proving

Proposition 3.3 of the paper.
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The sequence B(k)
d is a bimodule over Bd [9]. The right action

B(k)
d (n)× Bd(m1)× Bd(m2)× ...× Bd(mn) → B(k)

d (m1 +m2 + ...+mn) (1.1)

and the left action

Bd(n)× B(k)
d (m1)× B(k)

d (m2)× ...× B(k)
d (mn) → B(k)

d (m1 +m2 + ...+mn) (1.2)

are given by composition of disc maps. The composition maps are well-defined as the resulting
configurations satisfy the non-k-overlapping condition.

In this paper we introduce and study the filtered operad of overlapping discs, denoted B(∞)
d .

This new operad will contain information on both the operad Bd and all the bimodules B(k)
d .

Its filtration is by the degree of the overlap. The main results are Lemma 2.1, Corollary 2.2,
Proposition 3.1, Proposition 3.3, Remark 3.4 and Lemma 3.2 which describe the induced structure
in the homology that comes from the structure of a filtered operad on B(∞)

d .

1.1 Motivation One application of the computations that we have in mind is for the study
of spaces of immersions. Let Imm

(k)
∂ (Dm,Dn) be the space of immersions of Dm ↪→ Dn of discs

that are the standard inclusion in a neighborhood of the boundary and satisfy the condition that
the image of any k-element subset has more than one point. Such spaces are called non-k-equal
immersions. The bimodules of non-k-overlapping discs naturally appear in the study of these
spaces [9, Section 11], see also [1, 16] for more recent work.

One has a natural sequence of inclusions:

Emb∂(D
m,Dn) = Imm∂

(2)(Dm,Dn) ⊂ Imm∂
(3)(Dm,Dn) ⊂ · · · ⊂ Imm∂

(∞)(Dm,Dn), (1.3)

where
Imm∂

(k)(Dm,Dn) = hofib
(
Imm

(k)
∂ (Dm,Dn) → Imm∂(D

m,Dn)
)
.

Note that Imm∂
(∞)(Dm,Dn) = Imm∂(Dm,Dn) ≃ ∗. Each space Imm∂

(k)(Dm,Dn) is naturally
a Bm-algebra. Moreover Imm∂

(2)(Dm,Dn) = Emb∂(Dm,Dn) is a Bm+1-algebra [6, 7, 15]. (One
dimension higher little discs action comes from the fact that embeddings can be pulled through
each other.) Exactly the same construction endows (1.3) with a structure of a filtered Bm+1 −
algebra. This in particular means that one has a Browder bracket:

[·, ·] : HiImm∂
(k1)(Dm,Dn)×HjImm∂

(k2)(Dm,Dn) → Hi+j+mImm∂
(k1+k2−2)(Dm,Dn). (1.4)

The Goodwillie-Weiss tower associated to the space Imm∂
(k)(Dm,Dn) is expressed in terms

of an (infinitesimal) Bm-bimodule B(k)
n , [9, Section 11]. This tower is conjectured to converge

to Imm∂
(k)(Dm,Dn), provided n − m ≥ 2. Its m-th delooping in terms of bimodule maps is

obtained in [10]. On the other hand, the (m+ 1)-st delooping of the Goodwillie-Weise tower for
Emb∂(D

m, Dn) in terms of operad maps is obtained in [5,10]. We believe that the structure of a
filtered operad on B(•)

n and the computations made in this paper can be used to understand the
structure of a filtered Bm+1-algebra (1.3) and in particular the Browder bracket operator (1.4).

1.2 Homology of B(k)
d Recall that a pointed bimodule under H∗Bd is a bimodule over H∗Bd

containing Com, the commutative operad. That is, one has a commutative diagram of H∗Bd-
bimodules.
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H∗Bd H∗B(k)
d

Com

Also recall that H∗Bd is the associative unital operad for d = 1 and the graded Poisson unital
operad, with bracket of degree d− 1 for d ≥ 2, see [8].

In [9], the authors describe H∗B(k)
d as a pointed bimodule under H∗Bd in Theorem 3.6 of

their paper.

Theorem 1.1 (N. Dobrinskaya and V. Turchin, [9]). For k ≥ 3, the pointed bimodule H∗B(k)
d

under H∗Bd is generated by one element: {x1, ..., xk} ∈ H(k−1)d−1B
(k)
d (k) which is symmetric or

skew symmetric depending on the parity of d:

{xσ1 ...xσk
} = (−1)|σ|d{x1, ..., xk}, σ ∈ Σk. (1.5)

The only relation on the left action is the generalized Jacobi:

k+1∑
i=1

(−1)(i−1)d[xi, {x1, ..., x̂i, ..., xk+1}] = 0. (1.6)

There are two Leibniz relations with respect to the right action:

{x1, ..., xk−1, xk · xk+1} = xk · {x1, ..., xk−1, xk+1}+ {x1, ..., xk} · xk+1; (1.7)

{x1, ..., xk−1, [xk, xk+1]} = (−1)d[{x1, ..., xk−1, xk+1}, xk] + [{x1, ..., xk}, xk+1]. (1.8)

As a bimodule H∗B(k)
d (k) has two generators, {x1, ..., xk} ∈ H(k−1)d−1 and the generator

x1 ∈ H0B(k)
d (1) of Com = H0B(k)

d . Below we give a geometrical description of {x1, ..., xk}. We
know

B(k)
d (k) ≃ {(x1, ..., xk) ∈ (Rd)k| exclude x1 = x2 = ... = xk} = Rdk − Rd ≃ S(k−1)d−1.

This implies that the element {x1, ..., xk} ∈ H(k−1)d−1B
(k)
d (k) can geometrically be realized as a

[(k − 1)d− 1]-sphere:

|x1|2 + |x2|2 + ...+ |xk|2 = ε2,
k∑

i=1

xi = 0. (1.9)

Here, xi stands for the center of the i-th ball, each of radius << ε.
Elements in H∗B(k)

d (n), d ≥ 2 are linear combinations of products of iterated brackets. For-
mally, one can have a bracket, [·, ·], or a multiplication inside of a brace, however by the two
Leibniz relations (1.7) and (1.8), they can be pulled outside of the brace. This means the left
action on the two generators span all of the homology and nothing new comes from the right
action. All braces must be of the same length and braces cannot be inside of other braces.
Singletons are allowed in the products of brackets. One must have at least one brace inside a
bracket, for example, [[x1, x3], x2] is zero as an element. It is possible to have two or more braces
inside a bracket, for example [{x1, x3, x5}, {x2, x4, x6}].

Example: Let us examine the element x2 · [{x1, x3, x4}, x5] ∈ H3d−2B
(3)
d (5). It can be

geometrically represented as the following product of spheres: S(k−1)d−1×Sd−1 = S2d−1×Sd−1,
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since k = 3. Here x1, x3, x4 orbit closely around each other making a spherical class as seen
above in (1.9). The disc x5 orbits around x1, x3, x4. Lastly, x2 does not interact with the other
discs and stays still far away from the other points.

2 1 3 4 5• • • • •

Theorem 1.1 still holds when d = 1. However the bracket [x1, x2] should be understood as
x1x2 − x2x1 so the only operation is multiplication, as the underlying operad H∗B1 is Assoc,
the associative operad. In this case (1.7) implies (1.8). The relation (1.6) is instead equivalently
written as

k+1∑
i=1

(−1)i−1 (xi · {x1, ..., x̂i, ..., xk+1} − {x1, ..., x̂i, ..., xk+1} · xi) .

2. Filtered Operads of Overlapping Discs

An operad O is filtered if there is a filtration in each component of F0O(n) ⊂ F1O(n) ⊂ F2O(n) ⊂
... compatible with the composition maps:

◦i : Fk1O(n1)× Fk2O(n2) → Fk1+k2O(n1 + n2 − 1). (2.1)

We assume that id ∈ F0O(1). Note that F0O is a suboperad of O.
The filtration of the operad induces a sequence of maps in homology:

H∗F0O(n) → H∗F1O(n) → H∗F2O(n) → ... (2.2)

and the composition maps:

◦i : H∗Fk1O(n1)⊗H∗Fk2O(n2) → H∗Fk1+k2O(n1 + n2 − 1). (2.3)

One has the inclusion B(k)
d (n) ⊂ B(k+1)

d (n) since the non-k-overlapping condition is stricter
than the non-(k + 1)-overlapping condition. Now define FiO(n) := B(i+2)

d (n), where O(n) :=

B(∞)
d (n) :=

∞⋃
i=2

B(i)
d (n). Just as with Bd, here composition (2.1) is inserting a configuration of n2

discs from B(k2)
d (n2) into the i-th disc of B(k1)

d (n1). When k1 = k2 = 2 we get the usual operadic
composition in Bd. Note that B(2)

d is the usual little discs operad Bd. When k1 = 2 we get the
infinitesimal version of the left action (1.2) and when k2 = 2 we get the infinitesimal version of
the right action (1.1). Note that B(∞)

d (n) = (Bd(1))
n and therefore is contractible. Thus B(∞)

d is
equivalent to the commutative operad.

From [9], we already know the homology groups of H∗B(k)
d (n), k ≥ 2, and how the composition

maps work when either k1 or k2 is 2. Now we want to understand the maps in the sequence (2.2)
as well as the composition maps from (2.3), for k1, k2 > 2. To understand the sequence (2.2)
we will need the following lemma, which will also be useful when understanding the composition
maps (2.3).

Lemma 2.1. For all d ≥ 1, k ≥ 2 and n ≥ 0, the inclusion B(k)
d (n) ⊂ B(k+1)

d (n) is null-
homotopic.
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Proof. Define a homotopy H : B
(k)
d (n) × [0, 1] → B

(k+1)
d (n). Subdivide [0, 1] into n + 1 subin-

tervals. Recall that a point in B(k)
d (n) is a configuration of n-discs in the unit disc with the

condition that the intersection of any k of them is empty. Fix a point in B(k+1)
d (n) where all

the discs, labeled 1′, 2′, ..., n′, are disjoint. We will call this configuration the standard position
for the discs. Now take any point P ∈ B(k)

d (n), discs labeled 1, 2, ..., n. Recall that P lies inside
of a unit disc. We can smoothly rescale and translate this unit disc so that it is disjoint from
the 1′, ..., n′ discs in the standard configuration. This homotopy is done on the first subinterval[
0, 1

n+1

]
.

Next, we can smoothly rescale and translate the disc labeled 1 in P to the disc labeled 1′

in the standard position during the second interval of H. Then we can smoothly rescale and
translate the disc labeled 2 in P to the disc labeled 2′ in the standard position during the third
interval of H. We can iteratively do this for all n discs in P until each disc is in the standard
position in B(k+1)

d (n). In the i-th interval of H, rescale and translate the disc labeled (i− 1) to
the standard position, for i ≥ 2.

Note when moving the discs, up to k overlaps can occur. However since the k overlaps are
allowed in B

(k+1)
d (n), the homotopy is well-defined.

We show the idea of the above proof below pictorially for B(2)
d (3) ⊂ B(3)

d (3).

B(2)
d (3) ∋

3

2

1 →
3′ 2′ 1′

3
2

1

→
3′ 2′ 1′

3
2

1

→
3′ 2′ 1

3
2

3′ 2 1

3
→

3 2 1
∈ B(3)

d (3)→

Notice that when disc 2 is moved to 2′, it overlaps with disc 3. However since the movement
occurs in B

(3)
d (n), it does not cause any issues.

As an immediate consequence of Lemma 2.1, we get the following corollary:

Corollary 2.2. For d ≥ 1, the sequence of inclusions B(2)
d ⊂ B(3)

d ⊂ B(4)
d ⊂ . . . induces maps in

the homology with each map factoring through Com.

H∗B(2)
d H∗B(3)

d H∗B(4)
d

Com Com Com

· · ·

· · ·

For d ≥ 2 or k ≥ 3, the map H0B(k)
d → Com is just the projection to H0B(k)

d = Com. For
d = 1, k = 2, H∗B(2)

1 = Assoc. The map H∗B(2)
1 → Com is the natural projection Assoc → Com.

The map Com ↪→ H∗B(k)
d is always the inclusion H0B(k)

d → H∗B(k)
d , as H0B(k)

d = Com for k ≥ 3.
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3. Compositions in H∗B(•)
d

In the previous Section 2 we understood the sequence of maps (2.2). Now we want to understand
the compositions maps (2.3). Corollary 2.2 tells us that the map H∗B(k)

d → H∗B(k+1)
d can

be factored through Com. The spherical cycle {x1, ..., xk} is the boundary of the chain (disc)
c(x1, ..., xk) : {x1, ..., xk} = ∂(c(x1, ..., xk)) in B(k+1)

d (k). Hence {x1, ..., xk} = 0 in H∗B(k+1)
d (k),

by Corollary 2.2. The chain c(x1, ..., xk) can be explictly described as follows:

|x1|2 + |x2|2 + ...+ |xk|2 ≤ ε2
k∑

i=1

xi = 0 (3.1)

where xi represents the center of the i-th disc.

3.1 Examples We want to explicitly describe the composition maps

◦i : H∗Fk1O(n1)⊗H∗Fk2O(n2) → H∗Fk1+k2O(n1 + n2 − 1).

Before describing the general case of composition, let us examine some examples of the compo-
sition maps on the level of homology.

Let k1 = k2 = 3, n1 = 5, and n2 = 3:

◦i : H∗B(3)
d (5)⊗H∗B(3)

d (3) → H∗B(4)
d (7).

Let us examine the composition when i = 5:

[{x1, x2, x3}, x4] ·x5 ◦5 {x1, x2, x3} = [{x1, x2, x3}, x4] · {x5, x6, x7} ∈ Im(H∗B(3)
d (7)) ⊂ H∗B(4)

d (7).

Here we insert the second brace in x5. This element is in the image of H∗B(3)
d (7). By the

Corollary 2.2, [{x1, x2, x3}, x4] · {x5, x6, x7} = 0. Explicitly this element is the boundary of the
chain [{x1, x2, x3}, x4] · c(x5, x6, x7).

Now let us look at the composition when i = 4:

[{x1, x2, x3}, x4] · x5 ◦4 {x1, x2, x3} = [{x1, x2, x3}, {x4, x5, x6}] · x7.
Note that

[{x1, x2, x3}, {x4, x5, x6}] · x7 = ∂([{x1, x2, x3}, c(x4, x5, x6)] · x7).
This element is also zero by the same argument as above.
Lastly, let us look at the composition for i = 3:

[{x1, x2, x3}, x4] · x5 ◦3 {x1, x2, x3} = [{x1, x2, {x3, x4, x5}}, x6] · x7.
Note that compositions ◦1 and ◦2 give similar results to ◦3. We claim that resulting element

[{x1, x2, {x3, x4, x5}}, x6] · x7 ∈ H∗B(4)
d (7) is non-trivial. To show this, we must understand the

composition of braces, that is, {x1, x2, {x3, x4, x5}}, which can be realized as a map S2d−1 ×
S2d−1 → B(4)

d (7). We can geometrically see {x1, x2, {x3, x4, x5}} as follows:

1 2 3 4 5• • • • •

Here x3, x4, x5 orbit closely around each other while at the same time they collectively as a
cluster closely orbit with x1 and x2.
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3.2 Sign Conventions We choose our sign convention so that it agrees with that of the
Dobrinskaya-Turchin paper [9]. When we describe elements in the homology of B(k)

d in terms of
products of iterated brackets, cycles are realized as products of chains (usually spheres). We read
the ordering of the factors (spheres) from the way the product of iterated brackets is written. We
follow the rule that the spherical cycle corresponding to the brace is taken into account in the
ordering by the left brace. Similarly, the spherical cycle corresponding to the bracket is taken
into account by the comma. Non-spherical cycles are represented by letters (such as Y and Z)
and are taken into account in the ordering when they appear.

Example:
{x1, ..., xk−1, [Y,Z]} corresponds to a cycle realized by the product S(k−1)d−1×Y ×Sd−1×Z.

First we get S(k−1)d−1 due to the brace since the sign contribution is placed on the left most
brace. Then we have all of the xi’s which do not contribute to the sign. Next we have the
contribution from Y and then Sd−1, the contribution from the bracket, recall that it is taken
into account by the comma. Lastly, we have the contribution from Z.

3.3 Compositions From the examples in Section 3.1 one can see that many compositions will
be trivial. In fact, all non-trivial elements come from either composing braces inside of braces,
or from degree 0 classes. We can categorize elements in H∗B(k)

d into 3 different types:
I) H0B(k)

d (n) = Com(n).
II) Products with exactly one iterated bracket (the other factors singletons) that contain exactly
one brace.
III) The space spanned by all the other products of iterated brackets. In particular, elements of
this type will have at least two braces.

For all i, I ◦i I ̸= 0 as these are just compositions in Com. Compositions of the form II ◦i II
̸= 0 if and only if i is inside of the brace. We claim all the other compositions are trivial.

Proposition 3.1. Assume both k1 and k2 are greater than 2. Then the composition maps

◦i : H∗B(k1)
d (n1)⊗H∗B(k2)

d (n2) → H∗B(k1+k2−2)
d (n1 + n2 − 1) (3.2)

are trivial restricted on I ◦i II, I ◦i III, II ◦i I, II ◦i III, III ◦i I, III ◦i II, III ◦i III for all i and
on II ◦i II if i is outside of the brace.

Proof. Cases I ◦i II and I ◦i III: Let x1 · ... · xn1 ∈ H0B(k1)
d (n1) be of type I and β(x1, ..., xn2) ∈

H∗B(k2)
d (n2) be of type II or III. Compositions in these cases are as follows:

x1 · ... · xn1 ◦i β(x1, ..., xn2) = x1 · ... · xi−1 · β(xi, ..., xi+n2−1) · ... · xn1+n2−1.

The result of this composition is in Im(H>0B(k2)
d (n1+n2−1)) ⊂ H>0B(k1+k2−2)

d (n1+n2−1).
Since k1 is assumed to be greater than 2, by Lemma 2.1, the compositions of these forms are
trivial.

Cases II◦iI and III◦iI: Let α(x1, ..., xn1) ∈ H∗B(k1)
d (n1) be of type II or III and x1 ·...·xn2 ∈

H0B(k2)
d (n2) be of type I. Compositions in these cases are as follows:

α(x1, ..., xn1) ◦i x1 · ... · xn1 = α(x1, ..., xi−1, xi · ... · xi+n2−1, xi+n2 , ..., xn1+n2−1).

If i is not in the brace of α(x1, ..., xn1) then the result of the composition is clearly in
Im(H>0B(k1)

d (n1 + n2 − 1)) ⊂ H>0B(k1+k2−2)
d (n1 + n2 − 1). Since k2 is assumed to be greater

than 2, by Lemma 2.1, the compositions of these forms are trivial.
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Case II◦iII: Let α(x1, ..., xn1) ∈ H∗B(k1)
d (n1) be an element of type II and let β(x1, ..., xn2) ∈

H∗B(k2)
d (n2) be another element of type II.

Compositions are as follows:

α(x1, ..., xn1) ◦i β(x1, ..., xn2) = α(x1, ..., xi−1, β(xi, .., xi+n2−1), xi+n2 , ..., xn1+n2−1).

Since i is not inside the brace, the result of the composition is in Im(H>0B(k′)
d (n1 + n2 − 1)),

where k′ = max(k1, k2). Then Im(H>0B(k′)
d (n1+n2−1)) ⊂ H>0B(k1+k2−2)

d (n1+n2−1). Since k1
and k2 are assumed to be greater than 2, by Lemma 2.1, any composition of this form is trivial.

Cases III ◦i II and III ◦i III: Let α(x1, ..., xn1) ∈ H∗B(k1)
d (n1) be an element of type III

and let β(x1, ..., xn2) ∈ H∗B(k2)
d (n2) be an element of type II or III. Compositions are as follows:

α(x1, ..., xn1) ◦i β(x1, ..., xn2) = α(x1, ..., xi−1, β(xi, ..., xi+n2−1), ..., xn1+n2−1).

Since α(x1, ..., xn1) is of type III, it has at least two braces. Therefore for any i, there is at least
one brace of α(x1, ..., xn1) that is unaffected by the composition. That brace is of length k1 and
is the boundary of the chain c(x1, ..., xk1). Therefore the composition is trivial.

Example : For k1 = 3, k2 = 4, n1 = 6, n2 = 4, we get a map ◦2 : B(3)
d (6) × B(4)

d (4) →
B(5)
d (9). Let α = [{x1, x2, x3}, {x4, x5, x6}] and β = {x1, x2, x3, x4}. The composite cycle α ◦2 β

can be realized as a product of spheres S2d−1 × S3d−1 × Sd−1 × S2d−1, which is a boundary
∂(S2d−1 × S3d−1 × Sd−1 ×D2d):

[{x1, x2, x3}, {x4, x5, x6}] ◦2 {x1, x2, x3, x4} = [{x1, {x2, x3, x4, x5}, x6}, {x7, x8, x9}]
= ∂[{x1, {x2, x3, x4, x5}, x6}, c(x7, x8, x9)]
= 0.

For the inner brace, {x2, x3, x4, x5}, any three of the discs 2, 3, 4, and 5 can overlap. If we
replace {x2, x3, x4, x5} with Y in the brace {x1, {x2, x3, x4, x5}, x6}, we have {x1, Y, x6} and any
two of the discs 1, Y , and 6 can overlap. Therefore if Y overlaps with either 1 or 6 there is at
most four discs overlapping, so the result is indeed in B(5)

d (9). However since {x7, x8, x9} bounds
a disc, as seen above, the result of the composition is zero in B(5)

d (9).

The remaining case II ◦i III is the most difficult and we will need the following lemma:

Lemma 3.2. Let {x1, ..., xk1} ∈ H(k1−1)d−1B
(k1)
d (k1) and let β(x1, ..., xn2) ∈ H∗B(k2)

d (n2) be
either of the form β = Y · Z or β = [Y, Z] for some Y and Z. When β = Y · Z, then

{x1, ..., xk1−1, (Y · Z)} = (−1)|Y |((k1−1)d−1)Y · {x1, ..., xk1−1, Z}+ {x1, ..., xk1−1, Y } · Z, (3.3)

and when β = [Y,Z], then

{x1, ..., xk1−1, [Y, Z]} = (−1)(|Y |+d−1)((k1−1)d−1)[Y, {x1, ..., xk1−1, Z}] + [{x1, ..., xk1−1, Y }, Z].

(3.4)

Proof. The formulas (3.3) and (3.4) do not follow from (1.7) and (1.8), but are proved by a
similar argument as in [9, Examples 5.2 and 5.3], which was inspired from [2]. Consider the cycle
{x1, ..., xk1−1, (Y ·Z)}. When we pull Z far away, it forms a chain, which might have a forbidden
(k1 + k2 − 1)-overlap. This could only happen near the plane

x1 = ... = xk1−1 = Z,
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where abusing notation, Z denotes the center of mass of points appearing in the chain Z. We
remove a small tubular neighborhood of this forbidden plane and this produces the cycle Y ·
{x1, ..., xk1−1, Z}. On the other hand when Z is far away we get the cycle {x1, ..., xk1−1, Y } · Z.
This proves the relation (3.3).

Geometrically we can see the chain C below.

•

{x1, ..., xk1−1, (Y · Z)} Y · {x1, ..., xk1−1, Z} {x1, ..., xk1−1, Y } · Z

Now consider the cycle {x1, ..., xk1−1, [Y, Z]}. We pull [Y, Z] together far away. This produces
a chain that intersects forbidden strata. Notice Y and Z rotate around one another and thus
never meet. This chain meets the plane

x1 = x2 = ... = xk1−1 = Z.

By removing a tubular neighborhood of this intersection with the chain we get the cycle
{x1, ..., xk1−1, Z} at the boundary near every point of intersection. Simultaneously this cycle
rotates around Y since x1, ..., xk1−1 have collided with Z. Hence we have [Y, {x1, ..., xk1−1, Z}]
as part of the boundary of our chain. Similarly the intersection with the plane

x1 = x2 = ... = xk1−1 = Y

produces the cycle [{x1, ..., xk1−1, Y }, Z]. On the other end of the cylinder, the boundary is given
by {x1, ..., xk1−1, 1}·[Y,Z] and is 0 in the homology as {x1, ..., xk1−1, 1} = 0 in H>0B(k1)

d (k1−1) =

0. There are no other forbidden planes to contribute and thus we obtain (3.4). Geometrically
we can see the chain C below.

• •

{x1, ..., xk1−1, [Y, Z]}
[Y, {x1, ..., xk1−1, Z}][{x1, ..., xk1−1, Y }, Z]

{x1, ..., xk1−1, 1} · [Y,Z]

Case II ◦i III: Let α(x1, ..., xn1) ∈ H∗B(k1)
d (n1) be an element of type II and let

β(x1, ..., xn2) ∈ H∗B(k2)
d (n2) be an element of type III. Compositions are as follows:

α(x1, ..., xn1) ◦i β(x1, ..., xn2) = α(x1, ..., xi−1, β(xi, .., xi+n2−1), xi+n2 , ..., xn1+n2−1)

If i is not in the brace of α(x1, ..., xn1) then the brace of α(x1, ..., xn1) bounds a disc, that is,
{xi1 , ..., xik1} = ∂c(xi1 , ..., xik1 ), similar to the example above.
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If i is in the brace of α(x1, ..., xn1) then we can apply Lemma 3.2. After iteratively applying
(3.3) and (3.4), although there can be braces inside of braces, each summand in the result must
also have {xi1 , ..., xik2} outside of the brace. Indeed, since β(x1, ..., xn2) is of type III, and thus
has at least two braces. Then {xi1 , ..., xik2} = ∂c(xi1 , ..., xik2 ). Since the brace {xi1 , ..., xik2}, is
the boundary of a disc, composition is trivial.

Proposition 3.3. The composition of braces evaluates as follows:

{x1, ..., xk1−1, {xk1 , ..., xk1+k2−1}} = −(−1)(k1−1)d
k1−1∑
i=1

(−1)(i−1)d[xi, {x1, ..., x̂i, ..., xk1+k2−1}]

(3.5)

= (−1)(k1−1)d
k1+k2−1∑

i=k1

(−1)(i−1)d[xi, {x1, ..., x̂i, ..., xk1+k2−1}]

(3.6)

Remark 3.4. Note that Proposition 3.1, Lemma 3.1, and Proposition 3.3 determine any com-
position of the type II ◦i II.

Note that the difference of (3.5) and (3.6) is exactly the generalized Jacobi relation (1.6).
Additionally, (3.5) and (3.6) can be thought of as a relation in the operadic-type structure of
H∗B(•)

d .

Proof. We can see the above relation geometrically as follows:

{x1, ..., xk1−1, {xk1 , ..., xk1+k2−1}}

Consider the intersection of the space M(k1+k2−2)
d (k1 + k2 − 1) with the sphere given by

k1+k2−1∑
i=1

xi = 0 and
k1+k2−1∑

i=1
x2i = 1. This space is homotopy equivalent to M(k1+k2−2)

d (k1 +

k2 − 1), after taking the quotient by translations and positive rescaling. The obtained space
is S(k1+k2−2)d−1 with several subspheres removed. Each removed subsphere is given by the
intersection of S(k1+k2−2)d−1 with the plane x1 = ... = x̂i = ... = xk1+k2−1 = 0 for 1 ≤ i ≤
k1+k2−1. All the removed subspheres are disjoint. We can take tubular neighborhoods around
each subsphere, which are also all disjoint. Each tubular neighborhood has boundary which is
exactly the cycle [xi, {x1, ..., x̂i, ..., xk1+k2−1}]. After removing these tubular neighborhoods we
are left with a manifold with boundary that we denote X

(k1+k2−2)
d (k1 + k2 − 1). The boundary

of X(k1+k2−2)
d (k1 + k2 − 1) is exactly the generalized Jacobi relation (1.6) for k = k1 + k2 − 2.
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Then {x1, ..., xk1−1, {xk1 , ..., xk1+k2−1}} is a submanifold of X
(k1+k2−2)
d (k1 + k2 − 1) that is of

codimension 1. Thus {x1, ..., xk1−1, {xk1 , ..., xk1+k2−1}} splits X
(k1+k2−2)
d (k1 + k2 − 1) into two

parts where one part is given by the right hand side of (3.5) and the other is given by (3.6).
The cycle {x1, ..., xk1−1, {xk1 , ..., xk1+k2−1}} can be realized as a product of spheres:

S(k1−1)d−1 × S(k2−1)d−1. We can describe the first sphere S(k1−1)d−1 by the following equations:

x1 + · · ·+ xk1−1 + Y = 0 x21 + · · ·+ x2k1−1 + Y 2 = c2 · k1(k1 − 1) (3.7)

where Y = 1
k1−1(xk1+1 + ...+ xk1+k2−1).

Define xk1 = xk1 −Y , xk1+1 = xk1+1−Y ,..., xk1+k2−1 = xk1+k2−1−Y . Then we can describe
the second sphere by the following equations:

xk1 + · · ·+ xk1+k2−1 = 0 x2k1 + · · ·+ x2k1+k2−1 = ϵ2 · k2(k2 − 1), ϵ2 << c2. (3.8)

Next we define a chain one dimension bigger by pulling only one point, xk1 , in the direction
of (1, 0, ..., 0). As we pull xk1 it can collide with xk1+1, ..., xk1+k2−1 only when it intersects with
(k1 − 1) forbidden strata each given by the following set of equations:

x1 = · · · = x̂i = · · · = xk1+k2−1, 1 ≤ i ≤ k1 − 1. (3.9)

Note that xj = xi if and only if xj = xi. The obtained chain is a cylinder S(k1−1)d−1 ×
S(k2−1)d−1 × [0, N ], where N >> 0. This cylinder intersects the (k1 − 1)-forbidden strata (3.9)
transversely and disjointly.

• • •· · · · · ·

{x1, ..., xk1−1{xk1 , .., xk1+k2−1}} xk1 · {x1, ..., xk1−1{1, xk1+1, ...xk1+k2−1}}
[xi, {x1, ..., x̂i, ..., xk1+k2−1}]

To get an actual chain in M(k1+k2−2)
d (k1+k2−1), we remove disjoint tubular neighborhoods

of each intersection with the forbidden strata.
As an example, consider the intersection with the stratum x2 = · · · = xk1+k2−1. It happens

when the initial position of xk1 = (−(k1 − 1)ϵ, 0, ..., 0) and the position of xj = (ϵ, 0, ..., 0) for
j = k1+1, ..., k1+k2−1. Indeed, when xk1 is pulled in the direction of (1,0,...,0), the same happens
with xk1 and it hits all the other xj , j = k1 + 1, ..., k1 + k2 − 1 only if xk1+1 = · · · = xk1+k2−1

and are in the position (ϵ, 0, .., 0). Now since Y = 1
k1−1(xk1+1 + ... + xk1+k2−1) and all xj ,

j = k1 + 1, ..., k1 + k2 − 1 are equal, we get Y = xj , j = k1 + 1, ..., k1 + k2 − 1. We also need Y

to coincide with x2, ..., xk1−1, this reduces (3.7) to the following equations:

x1 + (k1 − 1)Y = 0 (3.10)

x21 + (k1 − 1)Y 2 = c2k1(k1 − 1). (3.11)
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The first equation (3.10) kills translations and the second equation (3.11) kills rescaling.
Thus we get a sphere Sd−1, which corresponds to [x1, Y ]. However since Y has collided
with x2, ..., xk1+k2−1, we remove from the attained chain a tubular neighborhood of its in-
tersection with the forbidden stratum x2 = · · · = xk1+k2−1. This gives us exactly the cycle
[x1, {x2, ..., xk1+k2−1}].

Therefore, in general, if Y has collided with x1, ..., x̂i, .., xk1+k2−1, for i = i, ..., k1−1, then we
get similarly

xi + (k1 − 1)Y = 0

x2i + (k1 − 1)Y 2 = c2k1(k1 − 1).

This gives a sphere Sd−1 corresponding to [xi, Y ]. We remove from the cylinder S(k1−1)d−1×
S(k2−1)d−1 × [0, N ] a tubular neighborhood of its intersection with the forbidden strata x1 =

· · · = x̂i = · · · = xk1+k2−1, which yields the boundary cycle [xi, {x1, ..., x̂i, .., xk1+k2−1}].
At the right end of the cylinder, S(k1−1)d−1 × S(k2−1)d−1 × [0, N ], we get a cycle xk1 ·

{x1, ..., xk1−1{1, xk1+1, ...xk1+k2−1}} which is homologously trivial since {1, x1, ...xk2−1} = 0 ∈
H≥0M(k2)

d (k2− 1) = 0. All together, this gives us the relation (3.5). Note that (3.6) minus (3.5)
is the generalized Jacobi (1.6) and therefore (3.6) is a consequence of (3.5).

We explain how the sign in front of the sum (3.6) is found in the next section. It is enough
to understand the sign in front of only one of the summands in (3.6) (We do it for the very last
one). This is due to the argument made at the beginning of the proof.

4. Signs in Theorem 3.3

In [9, Section 6], the authors describe the cohomology groups H∗M(k)
d (n) as spaces of certain

admissible k-forests, where the k-forests have two types of vertices square and round. If a k-forest
has only one component, we call it a k-tree. Every square vertex contains a (k − 1)-elements
subset of {1, ..., n} and every round vertex contains just one element. Each round vertex must be
connected by an edge to a single square vertex, or completely disconnected from all other vertices.
Square vertices must be connected to at least one round vertex. One orients all the given edges
between the vertices. Each k-forest has an orientation set, which consists of all the edges and
square vertices. The order of the orientation set encodes the coorientations of the corresponding
chains. The degree of a square vertex is (k−2)d and the degree of an edge is d−1. The cocycles
in H∗M(k)

d (n) corresponding to the k-forests are geometrically realized as an intersection number
with cooriented chains in M(k)

d (n), which are defined by a set of (in)equalities as follows. If i
and j are in the same square vertex, then xi = xj . The authors give a projection p1 : Rd → Rd−1

where (x1, ..., xd) 7→ (x2, ..., xd). For two vertices A and B in a forest that are connected by an
edge oriented from A to B, they require that B is “above" A. Explicitly, for all i ∈ A and all
j ∈ B, x1i ≤ x1j and p1(xi) = p1(xj).

In [9, Section 8], the authors define a map Ψ, which describes the intersection between cycles
given as products of iterated brackets (and geometrically realized as products of spheres) with
the k-forests cocycles.
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As an example,

Ψ({x1, ..., xk}) =
k∑

ℓ=1

(−1)(ℓ−1)d

1 1, ..., ℓ̂, ..., k

ℓ

2 (4.1)

The formula (4.1) means that

{x1, ..., xk}
⋂ 1 1, ..., ℓ̂, ..., k

ℓ

2 = (−1)(ℓ−1)d.

For this, one needs that the sphere {x1, ..., xk} given by the equations (1.9) should be oriented
as follows. One projects this sphere to (x1, ..., xk−1). We get an ellipsoid whose orientation is
such that the outside normal vector taken as a first one, union the oriented tangent frame gives
(−1)kd times the standard orientation of R(k−1)d.1

Now to determine the sign in front of (3.6) in Theorem 3.3, we consider the intersection of
the cocycle

1 1, ..., k̂1 − 1, ..., k1 + k2 − 2

k1 − 1 k1 + k2 − 1

2 3

with {x1, ..., xk1−1, {xk1 , ..., xk1+k2−1}} and with the right hand side of (3.6). The corresponding
cochain intersects only the last summand of (3.6), [xk1+k2−1, {x1, ..., xk1+k2−2}]. The latter
intersection is obtained by computing

Ψ([xk1+k2−1, {x1, ..., xk1+k2−2}]) =

1, ..., k̂1 − 1, ..., k1 + k2 − 2 2

k1 − 1

k1 + k2 − 1
1

3

+ · · ·(−1)(k1−2)d

See Section 8 in [9], in particular Example 8.1(a). The other summands are (k1 + k2 − 2)-trees
of different shapes (and thus do not contribute). The sign in front comes from (4.1). To get the
desired intersection, first we reverse the arrow between the square vertex and the round vertex
labeled k1 + k2 − 1. This gives the sign (−1)d. After reversing the arrow, we have the following
(k1 + k2 − 2)-tree:

2 1, ..., k̂1 − 1, ..., k1 + k2 − 2

k1 − 1k1 + k2 − 1

1 3

(−1)(k1−1)d

.

1We do not actually need it, but it is worth mentioning as in the original paper [9], the orientation of {x1, ..., xk}
has not been determined. It was just said that the orientation of {x1, ..., xk} is such that the pairing (4.1) works,
see [9, footnote 3].
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Next, we change the order of the elements 1, 2 and 3 in the orientation set by pulling 2 in
front and pushing 1 to the end. The degree of 1 and 3 is d− 1. The degree of 2 is (k1+ k2− 4)d.
So the obtained sign from reordering the orientation set is (−1)(d−1)(k1+k2−4)d× (−1)(d−1)(d−1) =

(−1)d−1. After this change, we now have the (k1 + k2 − 2)-tree that we want:

1 1, ..., k̂1 − 1, ..., k1 + k2 − 2

k1 − 1 k1 + k2 − 1

2 3

(−1)k1d−1

.

Finally, we computed the intersection

[xk1+k2−1, {x1, ..., xk1+k2−2}]
⋂ 1 1, ..., k̂1 − 1, ..., k1 + k2 − 2

k1 − 1 k1 + k2 − 1

2 3 = (−1)k1d−1. (4.2)

The sign in front of the last summand of (3.6) is (−1)(k1−1)d × (−1)(k1+k2−2)d = (−1)(k2−1)d.
In conclusion, we obtained that the intersection with the right hand side of (3.6) is

(−1)k1d−1 × (−1)(k2−1)d = (−1)(k1+k2−1)d−1. (4.3)

Next we want to check that this is the same sign that we get on the left hand side for
{x1, ..., xk1−1, {xk1 , ..., xk1+k2−1}}. This cycle is the product of two spheres S(k1−1)d×S(k2−1)d−1.

The chain

1 1, ..., k̂1 − 1, ..., k1 + k2 − 2

k1 − 1 k1 + k2 − 1

2 3

is the transverse intersection of the following two chains

1 1, ..., k1 − 2, k1

k1 − 1

2
1 k1, ..., k1 + k2 − 2

k1 + k2 − 1

2

The coorientation of

1 1, ..., k̂1 − 1, ..., k1 + k2 − 2

k1 − 1 k1 + k2 − 1

2 3

is equivalent to the coorientation obtained by concatenating the coorientations of the chains
corresponding to the k1-tree on the left

1 1, ..., k1 − 2, k1

k1 − 1

2
1 k1, ..., k1 + k2 − 2

k1 + k2 − 1

2
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and the k2-tree on the right in the previous display. Indeed, the difference in sign is ob-
tained by pulling the square vertex k1, ..., k1 + k2 − 2 through the edge of the above k1-tree.
This pulling does not affect the sign since the degree of this vertex is a multiple of d and
the degree of the edge is d − 1. By (4.1), the intersection of S(k1−1)d−1 (the first factor of
{x1, ..., xk1−1, {xk1 , ..., xk1+k2−1}}) with

1 1, ..., k1 − 2, k1

k1 − 1

2

is (−1)(k1−1−1)d−1 = (−1)k1d−1. Similarly by (4.1), the intersection of S(k2−1)d−1 (the second
factor of {x1, ..., xk1−1, {xk1 , ..., xk1+k2−1}}) and

1 k1, ..., k1 + k2 − 2

k1 + k2 − 1

2

is (−1)k2d−d−1. So the total sign is (−1)(k1+k2−1)d−1, which is exactly the same as (4.3). There-
fore, the sign (−1)(k1−1)d in front of (3.6) is correct.
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