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Abstract

We discuss formulas for the asymptotic growth rate of the number of summands in tensor powers
in certain (finite or infinite) monoidal categories. Our focus is on monoidal categories with
infinitely many indecomposable objects, with our main tools being generalized Perron–Frobenius
theory alongside techniques from random walks.
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1. Introduction

1A Growth problems. Let C be an additive Krull–Schmidt monoidal category. Let X ∈ C

be an object of C. We define

bn = bC,X
n := #indecomposable summands in X⊗n counted with multiplicities.

Let b : Z≥0 → Z≥0, b(n) = bn denote the associated function.

Notation 1A.1. We use bn to denote the entries of the sequence of numbers (bn)n∈Z≥0
, b for

the associated function and b(n) for the evaluation of b. We use a similar notation for other
sequences and functions. 3

Question 1A.2. The main point of this paper is to address, and partially answer, the following
questions:

(a) What is the dominating growth of bn?
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(b) Can we get an asymptotic formula a : Z≥0 → Z≥0 expressing b, e.g.

b(n) ∼ a(n),

where a is “nice”, ∼ denotes asymptotically equal?

(c) Say we have found a as in the previous point. Can we bound the variance or mean absolute
difference |bn − an|, or alternatively the convergence rate of limn→∞ b(n)/a(n) = 1?

We refer to (a), (b), and (c) as the growth problems associated with (C, X). We also explore
several statements along the same lines, which we will also call growth problems. 3

Remark 1A.3. The ordering in Question 1A.2 roughly reflects increasing difficulty. To draw an
analogy: if b would be the prime counting function, then (a) could say that it grows essentially
linearly, (b) could be the prime number theorem, and (c) could be (a consequence of) the Riemann
hypothesis. 3

Example 1A.4. If X and the monoidal unit 1 are indecomposable, and we have X⊗ X ∼= 1⊕ X,
then (bn)n∈Z≥0

is the Fibonacci sequence (with the first two terms equal to 1). In this case
the dominating growth is ϕn for ϕ ≈ 1.618 the golden ratio. We have b(n) ∼ ϕ√

5
· ϕn and

|bn − an| ≤ (ϕ− 1)n for ϕ− 1 ≈ 0.618.
Note the following: the action matrix of −⊗X acting on {1, X} is ( 0 1

1 1 ) has eigenvalues ϕ and
−(ϕ − 1). The largest eigenvalue ϕ gives the dominating growth, and the absolute value of the
second largest eigenvalue ϕ− 1 gives a bound for the variance. 3

For C with finitely many isomorphism classes of indecomposable objects, called a finite
growth problem, there is a general answer to all questions in Question 1A.2. The main player
is the Perron–Frobenius (PF for short) dimension which is the largest eigenvalue of the action
matrix associated with the given growth problem.

For arbitrary additive Krull–Schmidt monoidal categories there is not much we can say about
growth problems. However, we will add some natural assumptions (specified below) and address
the following:

(i) Below we will attach PFdimX ∈ R≥0 ∪ {∞} to X such that (PFdimX)n is the dominating
growth of bn. We show that this works in two cases using a generalization of the PF
dimension which is the usual PF dimension for finite growth problems (and we write PFdim
if the difference does not play a role):
(1) Whenever a certain condition is satisfied which we call PF admissible. A key in this

definition is that the associated PF dimension PFdimf can be approximated using
data from finite graphs (which is why we use f as a subscript in the notation).

(2) Whenever a certain random walk associated to X is sustainably positively recurrent.
This case is a special case of the previous one, but more well-behaved so that we can
say more; see (ii) up next.

In particular, in these cases we have the exponential growth theorem limn→∞
n
√
bn =

PFdimfX.

(ii) If the category generated by X is sustainably positively recurrent, then PFdimfX ̸= ∞ and
we will give an explicit expression for a(n) with b(n) ∼ a(n). In this case we also determine
the variance.

In the main body of the paper we will define our generalization of the PF dimension, (positive and
null) recurrent and transient categories (and growth problems), following the classical notions
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in the theory of random walks, as well as PF admissible and sustainably positively recurrent
growth problems. The rough mnemonic is as follows:

▶ The (positive and null) recurrent growth problems, although not necessarily finite, behave
like the finite case; in particular, if they are sustainably positively recurrent. This is the
nicest possible case beyond finite growth problems.

▶ The PF admissible growth problems generally behave quite differently from the finite case,
but there is still a reasonable theory of PF dimensions.

▶ For all other growth problems things become messy, and we do not know any general
method for approaching such problems.

1B Key examples. All cases where C has only finitely many indecomposable objects up
to isomorphism are sustainably positively recurrent and PF admissible. We discuss two addi-
tional classes of examples with potentially infinitely many isomorphism classes of indecomposable
objects:

(a) (G, X) =
(
Rep(G), X

)
: Here Rep(G) means finite dimensional G-representations over an

arbitrary field, for G a finite group and X ∈ Rep(G) arbitrary. This case is always sustain-
ably positively recurrent. More generally, all growth problems in finite tensor categories are
sustainably positively recurrent, and we will explore these as well. (Sustainably positively
recurrent.)

(b) Again (G, X): This time we consider Rep(G) for G a simple reductive group over a field
of characteristic zero with a representation X ∈ Rep(G) in defining characteristic (i.e. over
the same field). We show that this case is (almost always) transient, but PF admissible
with PFdimfX ̸= ∞. (PF admissible.)

In the process, we also address (though some details are left to the reader):
(c) (SBim, X): We discuss the category of Soergel bimodules SBim for an arbitrary finite

Coxeter group W , and X a generating object, or any X such that some monoidal power
of it has the indecomposable Soergel bimodule for the longest word of W appearing as a
direct summand (for SBim we use generating object to refer to either case). This case is
sustainably positive recurrent. We will see that PFdimfX ̸= ∞ by giving an explicit formula
for PFdimfX and for a(n) with b(n) ∼ a(n). (Both, sustainably positively recurrent and
PF admissible.)

(d) We also discuss examples where PFdimfX = ∞. Our examples include (SLZ≥0
(C),CZ≥0)

and (generalized) Deligne categories. This gives new proofs that these categories have
superexponential growth.

Finally, in the process, we classify for which (G, X) is (positive and null) recurrent.

1C Wrap up. Before we get started, here are a few remarks.

Remark 1C.1. Our paper generalizes results that are known in the literature:
(a) Our theorems applied to categories with finitely many indecomposable objects up to iso-

morphism recover the setting in [16].

(b) The exponential growth theorem partially generalizes [6, Theorems 1.4 and 1.9].

(c) Our classification of the (positive and null) recurrent groups and representations is a version
of Polya’s random walk theorem [23].
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This will be explained in the main body of the paper. 3

Remark 1C.2. All the above immediately generalize to certain algebras which have a basis with
structure constants in R≥0. We will use this setting below. The connection to the above is that
Grothendieck rings of additive Krull–Schmidt monoidal categories are R≥0-algebras. 3

Remark 1C.3. Magma and Mathematica code for some of the calculations in this paper are
available on GitHub: [17]. 3

2. The basic setting

The following mildly generalizes the usual notion of based R≥0-algebras as e.g. in [14, Section
2]. Let K be a unital subring of C, e.g. K = Z. A based R≥0-algebra is a pair (R,C) where
C = (ci)i∈I with 1 ∈ C is a K-basis of a K-algebra R such that all structure constants lie in R≥0,
i.e.:

cicj =
∑
k∈I

mk
ijck with mk

ij ∈ R≥0. (2.1)

Note that mk
ij ∈ K ∩ R≥0, so that mk

ij ∈ Z≥0 when K = Z. We usually only write R for (R,C)

if no confusion can arise. Note that the sum in (2.1) is finite since C is a K-basis.

Remark 2.2. The reader who wants to consider R≥0-algebras without the condition 1 ∈ C can
split their growth problem along an idempotent decomposition of the identity, so 1 ∈ C is not a
restriction.

By taking a subring of R if necessary, we can, and will, always assume that I is countable
and that the identity is the element c0 of the basis C. This is no restriction for growth problems
as we will see below. 3

We denote by R≥0C the subset of R of finite R≥0-linear combinations of elements of the basis
C with nonnegative real coefficients, and similarly for (R≥0 ∩ K)C. Given c ∈ (R≥0 ∩ K)C, we
write ccj =

∑
k∈I m

k
c,jck and we denote cn =

∑
i∈I m

i
n(c)ci. We define the function

bR,c : Z≥0 → R≥0, n 7→ b(n) = bR,c(n) :=
∑
i∈I

mi
n(c).

We are interested in the asymptotic behavior of this function. In particular, we use the termi-
nology growth problems associated to (R, c) in the same way as in Question 1A.2.

Convention 2.3. If not explicitly stated otherwise, representations are always finite dimensional.
3

Example 2.4. Good examples of growth problems (coming from categories) that we can treat
nicely are:

(a) Let C = ⟨X⟩ be the additive Krull–Schmidt monoidal category generated by X meaning
that we take direct summands of finite sums of objects X⊗n, where n ∈ Z≥0 (we call such X

generating objects). This example is good if C is a finite tensor category over an arbitrary
field F in the sense of [9, Definition 1.8.5 and Definition 4.1.1] or finite with respect to
isomorphism classes of indecomposable objects. This includes:
(i) (H, X) =

(
Rep(H), X

)
for H a finite dimensional Hopf F-algebra and X a finite dimen-

sional H-representation over F that generates Rep(H). Specifically, H could be the
group ring of a finite group and X a faithful H-representation.
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(ii) (SBim, X), for a generating object X, as in section 1, see for example [8] for details
about the category SBim.

(b) (G, X) =
(
Rep(G), X

)
where G is a simple reductive group and X is a G-representation,

both in characteristic zero. (The assumption on G being simple can be relaxed, see Exam-
ple 3.17.)

(c) (C, X) for either of the following: C = SLZ≥0
(C) and X = CZ≥0 the defining representation;

C = Rep(St,C) for t ∈ C \ Z and X the generating object, following the conventions
in [4], and C a Delannoy category with X the (defining) generating object following the
conventions in [12] (and [11, Theorem 13.2] shows that this is a good example).

We will revisit these several times below. 3

Remark 2.5. In an additive Krull–Schmidt monoidal category C the fusion graph of an object X
is the graph with vertices corresponding to the indecomposable objects in C and outgoing edges
of some vertex Y going to the indecomposable direct summands of X⊗Y. The below is motivated
by this terminology. 3

Let us consider the (oriented and weighted) fusion graph Γ = Γ(c) associated to some growth
problem (R, c). This graph is defined as follows:

(i) The vertices of Γ correspond to the basis elements ci ∈ C appearing in cn for some n, i.e.
those ci for which some mi

n ̸= 0.

(ii) There is an edge of labeled mi
c,j from the vertex cj to the vertex ci.

We identify the basis elements ci ∈ C with the vertices of Γ. After fixing some ordering of the
vertices, the matrix associated to a fusion graph Γ is called the action matrix M(Γ) = (mk

c,j)k,j .

Example 2.6. The key example the reader should keep in mind is the growth problem for(
SL2(C),C2

)
. In this case the fusion graph is Z≥0:

Γ(SL2) = • • • • • • ... ,

M(SL2) =

 0 1 0 0 0 ...
1 0 1 0 0 ...
0 1 0 1 0 ...
0 0 1 0 1 ...
0 0 0 1 0 ...

... ... ... ... ... ...

.
(2.7)

We will come back to this growth problem several times throughout the paper. 3

Example 2.8. The Grothendieck group of an additive Krull–Schmidt monoidal category C is
an example of a based R≥0-algebra with K = Z with basis given by the classes of indecomposable
objects. The growth problems as in Question 1A.2 can then be reformulated in terms of growth
problems for based R≥0-algebras, and we do this silently throughout. In this case the fusion
graph Γ(X) for X ∈ C is the fusion graph on the subcategory generated by X⊗n in the usual sense.

3

Lemma 2.9. For a fusion graph Γ for a growth problem we have:
(a) Γ has countably many vertices.

(b) There is a path from c0 to any other vertex of Γ. In particular, Γ is connected in the
unoriented sense.

(c) Every vertex of Γ is of finite degree.

Proof. This follows because we only consider cn, which, for fixed n, has only finitely many nonzero
coefficients in terms of C.
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3. The dominating growth via truncations

The naive cutoff of Γ is the sequence (Γk)k∈Z≥0
of subgraphs of Γ of the form

(Γk)k∈Z≥0
=

(
Γ0 = {c0} ⊂ Γ1 ⊂ Γ2 ⊂ ... ⊂ Γ

)
with

⋃
k∈Z≥0

Γk = Γ,

such that Γk is the induced subgraph of Γ that has precisely the vertices that can be reached
with a path of length ≤ k from c0. Note that Lemma 2.9.(c) implies that Γk will be finite.

Definition 3.1. A good filtration of a growth problem (R,C) is a sequence of (not necessarily
associative) R≥0-algebras

(
(Rk, Ck)

)
k∈Z≥0

over K such that:

(a) Ck ⊂ C is finite and

(Ck)k∈Z≥0
=

(
C0 = {c0} ⊂ C1 ⊂ ... ⊂ Ck ⊂ ... ⊂ C

)
with

⋃
k∈Z≥0

Ck = C.

(b) c0 is the unit of all Rk.

(c) The multiplication in Rk is given by taking the product in (R,C) followed by the projection
to (Rk, Ck).

The naive filtration of (R,C) is the good filtration where Ck are the vertices of Γk for the naive
cutoff. 3

Example 3.2. In (2.7) the naive cutoff consists of Γk being a line graph with k vertices. In
(4.16) below, all the Γk for k > 1 will include the vertex labeled P4. 3

For a good filtration, in (Rk, Ck) (this is of finite rank over K) we can define PFdimkci to be
the PF eigenvalue of the action matrix of ci with respect to Ck.

Lemma 3.3. We have PFdimkci ≤ PFdimk+1ci and limk→∞ PFdimkci ∈ R≥0 ∪ {∞} is well-
defined.

Proof. The first statement follows from the fact that subgraphs of a graphs cannot have larger
PF eigenvalues than the original graph. The second statement then follows since the previous
point gives us an increasing sequence.

Definition 3.4. Given c ∈ (R≥0 ∩K)C, define the (good filtration) PF dimension as the limit
PFdimfc = limk→∞ PFdimkc ∈ R≥0 ∪ {∞}. 3

Note that Definition 3.4 depends on the choice of a good filtration, see Example 3.17 below
for an almost example (illustrating why one needs to be careful with the choice of the filtration).

Lemma 3.5. If |I| < ∞, then Definition 3.4 agrees with the usual definition of PF dimension
using the largest eigenvalue of the associated matrix (or, equivalently, graph).

Proof. Immediate.

Definition 3.6. A growth problem (R,C) is called PF admissible if there exists a good filtration
such that:
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(a) PFdimf is superadditive and subpowermultiplicative:

PFdimfc+ PFdimfd ≤ PFdimf (c+ d),

PFdimfcn ≤ (PFdimfc)n,

for all c, d ∈ (R≥0 ∩K)C, n ∈ Z≥0.

(b) PFdimfci ≥ 1 for all ci ∈ C.
We always associate any such good filtration to a PF admissible growth problem. We use the
same terminology for the fusion graphs and action matrices themselves. 3

Remark 3.7. If R is of finite K-rank, then two good filtrations will agree on all but finitely many
pages of the filtrations. Abusing terminology a bit, we do not need to and will not specify a
specific good filtration. 3

Example 3.8. A growth problem coming from a transitive unital Z≥0-ring of finite Z-rank is PF
admissible. (This includes decategorifications of fusion categories.) The condition PFdimfci ≥ 1

for all ci ∈ C holds in this case, see e.g. [9, Proposition 3.3.4]. In fact, this assumption is
motivated from these rings. 3

Example 3.9. By a classical result of Kronecker, as summarized in e.g. [9, Lemma 3.3.14],
every growth problem corresponding to a finite graph satisfies Definition 3.6.(b) unless the PF
dimension is zero. 3

Notation 3.10. We use the usual Bachmann–Landau (also called Landau–Bachmann or just
Landau or even capital O) notation: A function f : Z≥0 → R≥0 satisfies f ∈ Θ(g) if there exist
constants A,B ∈ R>0 such that A ·g(n) ≤ f(n) ≤ B ·g(n) for all n0 < n for some fixed n0 ∈ Z≥0.
If one has the upper bound, then we write f ∈ O(g), and if the lower bound holds, then we write
f ∈ Ω(g).

Moreover, a function f is of superexponential growth if f ∈ Ω(γn) for all γ ∈ R>1 (in
particular, n

√
f(n) is unbounded in this case), and is of subexponential growth if f ∈ O(γn) for

all γ ∈ R>1. 3

Theorem 3.11. Let (R, c) be a growth problem.
(a) For a good filtration we have

b(n) ∈ Ω(γn) for all γ < PFdimfc. (3.12)

Assume now that (R, c) is PF admissible.

(b) If PFdimfc ̸= ∞, then

b(n) ∈ O
(
(PFdimfc)n

)
. (3.13)

(c) We have the exponential growth theorem:

β = lim
n→∞

n
√

bn = PFdimfc.

In particular, bn grows superexponentially if and only if PFdimfc = ∞.

In general the PF dimension depends on the choice of a good filtration. However, if one
has two different good filtrations such that the growth problem is PF admissible, then the PF
dimension is the same for both of them by Theorem 3.11.(c).
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Proof of Theorem 3.11. As in the proof of [16, Theorem 3B.2], the number bn can be computed
as the column sum of the matrix M(Γ)n for the first column corresponding to the identity. (We
will use this throughout.) To see this we consider the equation

M(Γ)c(n− 1) = c(n)
iterate−−−−→ M(Γ)nc(0) = c(n),

where c(k) =
(
c0(k), c1(k), ...

)
∈ RZ≥0

≥0 are vectors such that their ith entry is the multiplicity of
ci in ck, and c(0) = (1, 0, ...)T with the one is in the slot of c0 = 1. Observe M(Γ)nc(0) is the
first column of M(Γ)n.

(a). By an appropriate version of Feteke’s subadditive lemma, the sequence ( n
√
bn)n∈Z≥0

has
a limit

lim
n→∞

n
√
bn = β ∈ R≥0 ∪ {∞}.

Similarly, if we denote by (b
(k)
n )n∈Z≥0

the respective growth problem in the cutoff Rk for c ∈ Rk

and set b
(k)
n = 0 whenever c /∈ Rk (this happens for only finitely many k ∈ Z≥0), then

lim
n→∞

n

√
b
(k)
n = βk ∈ R≥0 ∪ {∞},

exists. Note hereby that βk = PFdimkc, by [16, Theorem 1] (which uses PF theory of finite
graphs). Moreover, the definition of a good filtration Definition 3.1 implies that b

(k)
n ≤ bn which

in turn implies that βk ≤ β for all k, n ∈ Z≥0. Therefore, PFdimfc ≤ β by Definition 3.4. Hence,
b(n) ∈ Ω(γn) for all γ < PFdimfc.

(b). We go back to the definition of bn. We have cn =
∑

i∈I m
i
n(c)ci and we obtain:

(PFdimfc)n ≥ PFdimfcn ≥
∑
i∈I

mi
n(c)PFdim

fci ≥
∑
i∈I

mi
n(c) = bn,

the inequalities following from the PF admissibility condition.

(c). This follows from the just established (3.12) and (3.13).

Example 3.14. Coming back to Example 2.6, the cutoff (Γi)i∈Z≥0
of Γ(SL2) is such that Γi is

the finite subgraph on the first i vertices exemplified by:

Γ7 = • • • • • • • .

We will prove later that this growth problem with the naive truncation is PF admissible, see
Proposition 3.16. It is easy to see that PFdimiΓi = 2 cos

(
π/(i + 1)

)
. Then PFdimfΓ(SL2) =

limi→∞ 2 cos
(
π/(i+ 1)

)
= 2. Thus, Theorem 3.11 implies that the dominating growth factor of
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bn is 2n. Moreover, dividing by the dominating growth factor, the log plots

,

,

shows (3.12) for γ = 1.99 and (3.13). 3

Next, a “nonexample”:

Example 3.15. We give an example where the PF admissibility condition is necessary for
Theorem 3.11. Suppose that our R≥0-algebra has a basis (ci)i∈Z≥0

with multiplication cicj = ci+j

and that c = αc0 + c1 for some α ∈ R≥0. Then c satisfies cci = α · ci + ci+1 for all i ∈ Z≥0. The
action matrix is an infinite Jordan block with α-labeled loops and we have

Γ(Jo) = • • • • • • ...

α α α α α α

,

M(Jo) =

 α 0 0 0 0 ...
1 α 0 0 0 ...
0 1 α 0 0 ...
0 0 1 α 0 ...
0 0 0 1 α ...

... ... ... ... ... ...

,

as the fusion graph. The naive cutoff is the sequence of finite Jordan blocks, in particular,
PFdimfci = 0 for i > 0 and α = 0, so this example does not satisfy Definition 3.6.(b). And in
fact we get:

cn =

n∑
i=0

(
n

i

)
αn−i · ci,

and therefore bn = (1 + α)n but PFdimfc = α. 3

Here are key examples of categories with infinitely many indecomposable objects up to iso-
morphism that are PF admissible:

Proposition 3.16. Any growth problem in Example 2.4.(b) is PF admissible.
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Proof. Recall that we only consider simple reductive groups. We will make use of the Verlinde
categories Vk(G) of level k, see for example [24] for a nice summary of the main properties we
need (when we refer to it we use the arXiv numbering). For example, that the PF dimension is
the categorical dimension.

In these semisimple categories the indecomposable (= simple) objects L(λ, k) are indexed
by Λk, which are cutoffs of the dominant integral Weyl chamber, see [24, Section 4] for details.
Moreover, we have

PFdimkL(λ, k) = dimVk(G) L(λ, k) =
∏
β>0

q⟨λ+ρ,β⟩ − q−⟨λ+ρ,β⟩

q⟨ρ,β⟩ − q−⟨ρ,β⟩

(the notation is as in [24, Section 1]) the so-called quantum Weyl dimension formula. Here
q = q(k) is a certain complex root of unity.

The only thing we need to know about this formula is that

lim
k→∞

PFdimkL(λ, k) =
∏
β>0

⟨λ+ ρ, β⟩
⟨ρ, β⟩

,

which is now the classical Weyl dimension formula. This is well-known, since k → ∞ corresponds
to q → 1.

Let us choose the cutoff such that the vertices of Γk can be matched with Λk. Using this
choice the induced product matches the product in the Verlinde category, by the fusion rules as
recalled in [24, Section 5]. (It is remarkable that the Verlinde product is a truncation.) Hence,
this shows that Definition 3.6.(b) holds.

Moreover, since the Verlinde categories are braided, it follows that the action matrices M(c, k)

of any R≥0-linear combination of the [L(λ, k)] commute with one another, and these matrices
can be simultaneously diagonalized. It is easily checked that the vector∑

λ∈Λk

PFdimkL(λ, k) · [L(λ, k)]

is an eigenvector of M(c, k). The classical PF theorem implies that the associated eigenvalue of
M(c, k) is PFdimkM(c, k). It follows that we have subpowermultiplicativity, or more precisely
even:

PFdimk

(
M(c, k)M(c′, k)

)
= PFdimk

(
M(c, k)

)
PFdimk

(
M(c′, k)

)
.

and superadditivity, ore more precisely even:

PFdimk

(
M(c, k) +M(c′, k)

)
= PFdimk

(
M(c, k)

)
+ PFdimk

(
M(c′, k)

)
.

This then implies Definition 3.6.(a).

Example 3.17. The argument in the proof of Proposition 3.16 also works, for example, for the
nonsimple group GLn(C) and its defining representation. However, the setting we use needs to
be adjusted since the induced product is not the product in the Verlinde cutoff.

Explicitly, take n = 2. Let us denote the vector representation of GL2(C) by L(1, 0). Then
there exists simple GL2(C)-representations L(a, b) with a, b ∈ Z≥0, a ≥ b such that L(1, 0) ⊗
L(a, b) ∼= L(a + 1, b) ⊕ L(a, b + 1), with the convention that L(a, b) is zero if a, b ∈ Z≥0, a ≥ b
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is not satisfied. The fusion graph is then of the form (with the vertices on a grid using (a, b) as
coordinates):

Γ(GL2) =

• • • • • •

• • • • •

• • • •

... ... ...

...

...

...

...

,

M(GL2) =


0 0 0 0 0 ...
J1 0 0 0 0 ...
0 J ′

2 0 0 0 ...
0 0 J2 0 0 ...
0 0 0 J ′

3 0 ...

... ... ... ... ... ...

,

with

{
Jk = (lower triangular) Jordan block of size k with eigenvalue 1,

J ′
k = Jk without the last column.

The naive filtration therefore gives PFdimfΓ(GL2) = 0 since all cutoffs are described by nilpo-
tent matrices, and Definition 3.6.(b) is not satisfied. In contrast, the Verlinde filtration gives
PFdimfΓ(GL2) = 2 (as the corresponding graph has backward arrows). 3

Remark 3.18. Proposition 3.16 and its proof also generalize [18, Theorem 1.2]. 3

Definition 3.19. We say an R≥0-algebra is of superexponential growth if there exists some c

such that bn grows superexponentially.
We say an additive Krull–Schmidt monoidal category is of superexponential growth if its

Grothendieck ring is of superexponential growth in the above sense. 3

Remark 3.20. Definition 3.19 runs in parallel to the definition of superexponential growth for
abelian monoidal categories using the length of objects. However, note that:

(a) An abelian growth problem could be of superexponential growth while its version defined
using bn might not grow superexponentially. We, however, do not know any example where
this happens.

(b) If bn grows superexponentially, then the abelian one does so as well.
Hence, the notion from Definition 3.19 “grows (potentially) slower” than the abelian one. 3

The next example is simple but crucial to determine categories of superexponential growth.

Example 3.21. Consider the following graph:

Γ(⋆N ) = 01

2

N

...

...

...
, M(⋆N ) =

 0 1 1 ... 1
1 0 0 ... 0
1 0 0 ... 0

... ... ... ... ...

1 0 0 ... 0

.
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This is called the star graph with N + 1 vertices. It is easy to see that PFdimΓ(⋆N ) =
√
N .

Let Γ(Y ) be the Young lattice, considered as an oriented graph by putting an orientation in
both directions. The first few layers of this graph are:

Γ(Y ) ↭

∅

.

We get PFdimfΓ(Y ) = ∞ since Γ(Y ) contains star graphs for arbitrarily large N . To see this
take the vertex 0 of the star graph to be a staircase partition (t, t− 1, t− 2, ..., 1) for some large
enough t. 3

Proposition 3.22. The following categories are of superexponential growth.
(a) The category Rep

(
SLZ≥0

(C),CZ≥0
)
.

(b) The Deligne category Rep(St,C), where t ∈ C \ Z.

(c) The so-called Delannoy categories from [12].

Proof. We can apply Example 3.21 three times: For Rep
(
SLZ≥0

(C),CZ≥0
)

this follows directly
from Theorem 3.11.(a) and Example 3.21.

The following argument is based on the description of the fusion graph of Rep(St,C) for t ∈
C\Z, which was provided to us by Victor Ostrik via email. We thank Victor for providing us with
this description. For Rep(St,C) we recall that the combinatorics of tensoring in is very similar
to the combinatorics of tensoring with ⋆N -representations if N ≫ 0. The correspondence is as
follows: if you have a partition (p1, p2, ...) labeling object in the Deligne category, it corresponds
to a partition (N − (p1 + p2 + ...), p1, p2, ...) for ⋆N . Now tensoring by a 1-node Young diagram
object is given by removing one node whenever possible and add it back. This description implies
the existence of star graphs, so we are done in the same way as for Rep

(
SLZ≥0

(C),CZ≥0
)
.

For the Delannoy categories from [12] we can again use star graphs for the fusion graphs
computed in [12, Section 7].

Remark 3.23. By [10], “most” of the categories discussed in [13] exhibit superexponential growth,
and we suspect that the same is true for the generalizations of the Delannoy categories from [12].

3

4. Recurrent and transient growth problems

We retain the setup in section 2. Following the classical theory of random walks, see e.g. [15]
where the reader will also find some standard terminology, we now define recurrent and transient
growth problems.
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To this end, recall that a vertex v ∈ Γ in a graph with countably many vertices (not just
a fusion graph) is recurrent if the probability of returning to v in the random walk with all
edge labels one on Γ is 1, and transient if its not recurrent. If v ∈ Γ is recurrent, then we call it
positive recurrent if the expected amount of time between recurrences is finite, and null recurrent
otherwise.

Remark 4.1. Technically speaking, we are slightly abusing the terminology here. What we refer
to as a ‘random walk’ does not align with the standard definition, since we often assign a weight
of one to each edge. In a true random walk, each edge would be given a label such that the sum
of all edge weights equals one. 3

Lemma 4.2. For a fusion graph Γ we have:
(a) Every vertex v of Γ is either recurrent or transient.

(b) Every recurrent vertex of Γ is either positively recurrent or null recurrent.

(c) Let C(Γ) be a connected component. If v ∈ C(Γ) is positively recurrent (or null recurrent
or transient), then so is any other w ∈ C(Γ).

Proof. (a) and (b) are true by definition (and only stressed because of the many alternative
definitions of recurrent and transient, which are not immediately opposite of each other), and
(c) is classical.

Note that Lemma 4.2 allows us to consider (positively/null) recurrence and transience for
one fixed connected component. We will use this below.

To state the main definition, we recall the notion of PF dimension of irreducible (not necessary
finite) R≥0-matrices à la Vere–Jones [28] (justifying the subscript in the following notation). For
such a matrix M = (mij)i,j∈I for a countable set I, let

PFdimV JM = lim
n→∞

h·n
√

m
(h·n)
ij , (4.3)

where m
(n)
ij is the (i, j)-entry of Mn, and h ∈ Z≥1 is the period. By [28, Theorem A] PFdimV JM

is independent of i and j.
Recalling that irreducible matrices correspond to strongly connected graphs, we can define:

Definition 4.4. For a strongly connected graph Γ with countably many vertices define the PF
dimension PFdimV JΓ using (4.3) with M being the adjacency matrix of Γ. 3

Remark 4.5. A generalization of PFdimV JΓ to graphs that are not necessarily strongly connected
was worked out in [27]. It however turns out that this generalization is not useful for our purposes.

3

The following is immediate:

Lemma 4.6. If |I| < ∞, then Definition 4.4 agrees with the usual definition of PF dimension
using the largest eigenvalue of the associated matrix (or, equivalently, graph).

Remark 4.7. We use the notation PFdimV J to indicate that this PF dimension is different from
the one we introduced in section 3. They however agree if |I| < ∞ by Lemma 3.5 and Lemma 4.6.

3
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Example 4.8. We continue with Example 2.6. In this case we get PFdimV JΓ(SL2) = 2 since

m
(2n)
11 (SL2) =

1

n+ 1

(
2n

n

)
∼ π−1/2 · n−3/2 · 22n.

This equation follows from a standard argument. Note that the period is two, which is why we
consider every second value of m(n)

11 (SL2) only. 3

We also recall the notion of final basic classes (FBC). Firstly, a class C(Γ) is a strongly
connected component of Γ and such a class is basic if:

PFdimV JC(Γ) ≥ PFdimV JC ′(Γ) for all strongly connected components C ′(Γ).

Finally, a basic class is final if there is no path to any other basic class. (Note that a FBC does
not need to be final in Γ itself.)

Example 4.9. For a strongly connected graph Γ is the only class, so it is a FBC. In particular,
what we will see below is a generalization of the strongly connected situation. 3

Example 4.10. Consider G = SL2(F̄2) and take the defining G-representation X = F̄2
2 over the

field F̄2. The growth problem (G, X) has the associated fusion graph (we illustrate a cutoff):

Γ
(
SL2(F̄2)

)
=

1

1
2

1

1
2

1

1

2

2

1

12

1

1

2

2

1

1
2

1

1

2

2

2
1 1

2

1

1

2
2

1

1
2

1

1

2

2

2

1

12

1

1

2

2

1

1
2

1

1

2

2

2

2
1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31
32

.

The pattern is as follows: The vertices are labeled with Z≥1. There is always one forward arrow,
from vertex i to vertex i+ 1. The backward arrows are of weight 2 and start at 2k − 1 and end
at 2k−2 for all k ∈ Z≥2. See, for example, [25] for details.

The strongly connected components are indexed by 2k for k ∈ Z≥0, with 2k being their
minimal vertex. In this case there is no FBC since all strongly connected components have PF
dimension < 2, but the limit k → ∞ of their PF dimensions is approaching 2.

In a bit more details, one can check (by calculation) that the PF dimension of the cutoffs
will be

0,
√
2,

√
2 +

√
2,

√
2 +

√
2 +

√
2 etc.

where the jumps happen when the number of vertices increases from 2k to 2k+1 in the sequence
of naive cutoffs. The limit approaches 2, by classical results about sequences of nested radicals.

3

The following is a key definition:
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Definition 4.11. Let (R, c) be a growth problem, and let FBC refer to its fusion graph Γ.
(a) The growth problem (R, c) is recurrent if all of its FBCs are recurrent and there exists at

least one FBC. The growth problem is transient otherwise.

(b) If (R, c) is recurrent, then we say (R, c) is positively recurrent if all of its FBCs are positively
recurrent, The growth problem is null recurrent otherwise.

We use the same terminology for graphs in general. 3

Note that a transient FBC dominates recurrent ones in the sense that the presence of even
a single transient FBC renders the growth problem transient, regardless of how many FBCs are
recurrent. Similarly, a null recurrent FBC dominates positively recurrent ones.

Lemma 4.12. Every growth problem is either recurrent or transient. Moreover, every recurrent
growth problem is either positively or null recurrent.

Proof. Immediate by definition (but stated for the same reasons as Lemma 4.2).

Example 4.13. Take the graph

Γ(Z) = • • • • •... ... .

The associated random walk is the classical random walk on Z. This is Polya’s first example of
a recurrent graph [23]. Additionally, this example is null recurrent.

In contrast, the random walk on Γ(SL2) from (2.7) is transient. Below we will see that this
is no coincidence, cf. Proposition 4.23.

The difference becomes evident when one looks at the number of path of length n starting
at the origin, and ending at vertex v. For n = 200, plotting this in R2 with (end vertex, number
of paths) gives:

Z :

-100 -50 50 100

5.0·10
57

1.0·10
58

1.5·10
58

2.0·10
58

, Z≥0 :

50 100 150 200

5.0·10
56

1.0·10
57

1.5·10
57

2.0·10
57

.

Note that for Γ(SL2) ∼= Z≥0 the peak of the binomial distribution is roughly at
√
200 ≈ 14.1. In

fact, the endpoints of paths in this case move to infinity, while they stay at the origin for Z.
For completeness: The graph Γ(Z) is also the fusion graph for a monoidal category: take

(Rep(S1), X1 ⊕ X−1) with X±1 being the rotation of an irrational angle ±θ. 3

Example 4.14. Similarly as for SL2(C), the growth problem for G = SL3(C) and X = C3 with
the defining G-action is also transient. In this case, the fusion graph is (here a cutoff):

Γ(SL3) ↭

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

.
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And similarly as in Example 4.13, the number of paths of length n starting at 1 and ending at
v moves outwards (illustrated using a large enough cutoff):

n = 50:

200 400 600 800

2.0·10
19

4.0·10
19

6.0·10
19

8.0·10
19

1.0·10
20

1.2·10
20

, n = 100:

200 400 600 800

5.0·10
42

1.0·10
43

1.5·10
43

,

n = 200:

200 400 600 800

5.0·10
89

1.0·10
90

1.5·10
90

.

In Proposition 4.23 we will see that this is not a coincidence. 3

Example 4.15. Every finite growth problem is positively recurrent. More generally, every
growth problem where the FBCs are finite is also positively recurrent. Explicitly, let G =

Z/2Z × Z/2Z be the Klein four group, and we take the ground field K = F2. Then one has
K[G] ∼= K[X,Y ]/(X2, Y 2), and using this presentation one can check that

Z3 ↭
•

• •
X Y

defines an indecomposable G-representation of dimension three, call it V = Z3. Moreover, it is
also easy to see that G has indecomposable G-representations Zk, for odd k ∈ Z≥1, where Zk is
the unique indecomposable summand of V ⊗(k−1)/2 that is not projective. Note that Z1

∼= L1 is
the trivial G-representation. One can check that dimK Zk = k and that all odd numbers appear.

Let P4 denote the regular G-representation. An easy calculation gives us then the following
fusion graph.

Γ(Kl) =

L1 Z3 Z5 Z7 Z9 Z11

P4

...

1 2 3 4 5 ...

3

,

M(Kl) =



3 0 1 2 3 4 5 ...
0 0 0 0 0 0 0 ...
0 1 0 0 0 0 0 ...
0 0 1 0 0 0 0 ...
0 0 0 1 0 0 0 ...
0 0 0 0 1 0 0 ...
0 0 0 0 0 1 0 ...

... ... ... ... ... ... ... ...


.

(4.16)

The labeled loop at the vertex with label 3 represents three loops.
Let us consider the growth rate problem for (G,V ). Then this is positively recurrent since

the only FBC is {P4} and therefore a finite graph. 3

For a more general statement see Proposition 4.23 below.

Example 4.17. The growth problem in Example 4.10 is transient since there is no FBC. 3
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Recall that a group G is virtually H if H is isomorphic to a finite index subgroup of G.

Theorem 4.18 (Polya’s random walk theorem for representations). Let K be a field of char-
acteristic zero. For any (finitely presentable) group G and finite dimensional faithful completely
reducible G-representation X the following are equivalent:

(a) The growth problem (G, X) is recurrent.

(b) The Zariski closure of the image of G in GL(X) is virtually a torus of rank 0, 1 or 2.
Moreover, the following are also equivalent:

(i) The growth problem (G, X) is positively recurrent.

(ii) The Zariski closure of the image of G in GL(X) is virtually a torus of rank 0, i.e. G is
finite.

If X is not faithful, then go to the biggest quotient group that acts faithfully and repeat.

Proof. We will make use of the following. We will formulated it for bialgebra, but we use the
same notation as for group.

Lemma 4.19. Let G be a bialgebra, and H ⊂ G be a subbialgebra. Let X be a G-representation
such that:

(a) The growth problem (G, X) has a strongly connected fusion graph with PFdimV JX < ∞.

(b) The growth problem (H, X) obtained via restriction has a strongly connected fusion graph
with the same PF dimension PFdimV JX.

Let X ∼=
⊕j

i=1 Xi as an H-representation obtained by restriction. If the growth problem (H, Xi) is
transient for some i ∈ {1, ..., j}, then (G, X) is also transient.

Proof. We only prove the statement in the aperiodic case, to keep the formulas simple. First
note that the transience of (H, Xi) implies that (H, X) is also transient as there is a subgraph
corresponding to (H, Xi). Now, since (H, X) is transient with strongly connected fusion graph we
have ∑

n∈Z≥0

h
(n)
11 · (PFdimV JX)−n < ∞,

where h
(n)
11 is the (1, 1)-entry of the nth power of the action matrix corresponding to the fusion

graph of (H, X). Using a similar notation for (G, X), we also have∑
n∈Z≥0

g
(n)
11 · (PFdimV JX)−n ≤

∑
n∈Z≥0

h
(n)
11 · (PFdimV JX)−n,

by assumption. Taking both together, the claim follows.

The following is then key:

Lemma 4.20. Let G = SL2(C) and X any simple G-representation of dimension dimC X >

1. Then the growth problem (G, X) is transient. The same is true when replacing C by any
characteristic zero field.

Proof. Recall that the fusion rules for G = SL2(C) are as follows. We index the simple G-
representations L(λ) by their highest weight λ ∈ Z≥0. Then, using the convention that L(ν) = 0

if ν /∈ Z≥0, we have

L(λ)⊗ L(µ) ∼= L(λ− µ)⊕ L(λ− µ+ 2)⊕ ... ⊕ L(λ+ µ− 2)⊕ L(λ+ µ)
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for λ ≥ µ and similarly for λ < µ.
The fusion graphs are now easily computed. We give a few examples of how their action

matrices look like:

M(λ = 1) =

 0 1 0 0 0 ...
1 0 1 0 0 ...
0 1 0 1 0 ...
0 0 1 0 1 ...
0 0 0 1 0 ...

... ... ... ... ... ...

, M(λ = 3) =

 0 1 0 1 0 ...
1 0 1 0 1 ...
0 1 0 1 0 ...
1 0 1 0 1 ...
0 1 0 1 0 ...

... ... ... ... ... ...

, (4.21)

and the number of offdiagonals with 1s keep on increasing with steps of two for λ = 5, λ = 7

etc. The case where λ is even is similar, but with 1s on the main diagonal except in the top left
entry which is still zero. For example:

M(λ = 2) =

 0 1 0 0 0 ...
1 1 1 0 0 ...
0 1 1 1 0 ...
0 0 1 1 1 ...
0 0 0 1 1 ...

... ... ... ... ... ...

, M(λ = 4) =

 0 1 1 0 0 ...
1 1 1 1 0 ...
1 1 1 1 1 ...
0 1 1 1 1 ...
0 0 1 1 1 ...

... ... ... ... ... ...

. (4.22)

Note that the matrices for λ ∈ 2Z≥0 are on a different basis on the Grothendieck level (namely
on the Grothendieck classes of L(0), L(2), L(4), etc.)

Let us now prove the case where λ = 2 as an example. In this case mn
11 is given by A005043

on [21]. In particular, m(n)
11 ∼ 33/2

8
√
π
· n−3/2 · 3n and this implies that∑

n∈Z≥0

m
(n)
11 · 3−n ≈ 33/2

8
√
π

∑
n∈Z≥0

n−3/2 < ∞,

which is the usual calculation one need to do in order to verify that a problem is transient. (For
the reader unfamiliar with random walks, this is one of many possible, and equivalent, definitions
of transient, see e.g. [15, Chapter 7].)

For general even λ > 0 we have m
(n)
11 ∼ some scalar · n−3/2 · λn, as follows from e.g. [3,

Theorem 2.2]. So the same calculations as for λ = 2 works. Moreover, again by e.g. [3, Theorem
2.2], when λ is odd, then m

(2n)
11 ∼ some scalar · n−3/2 · λ2n, and again the same calculation

works.

We can assume that G is an algebraic group since we can replace it with the Zariski closure
of its image in GL(X). So assume that G is an algebraic group, whose identity component is a
reductive group since X is completely reducible. We can, and will, even replace G by its identity
component.

If G is not a torus, then we can apply the Jacobson–Morozov theorem to find a copy of
SL2(C) in G. Then Lemma 4.20 (see also Example 4.13) and Lemma 4.19, whose assumptions
are satisfied by [6, Theorem 1.4], imply that the growth problem (G, X) is transient.

On the other hand, if G is torus, then Polya’s classification of recurrent random walks applies,
and we get a recurrent growth problem if and only if the rank of the torus is 0, 1 or 2.

The claim about positively recurrent versus null recurrent follows then from Example 4.13.

Proposition 4.23. The following growth problems are positively recurrent.
(a) For an arbitrary field, (G, X) for a finite group G and X any G-representation.

(b) For an arbitrary field, (C, X) for a finite tensor category C and X ∈ C any object.

(c) For an arbitrary field, (SBim, X) for Soergel bimodules SBim attached to a finite Coxeter
group and X ∈ SBim any object.
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Moreover, the following growth problems are transient.
(i) For a field of characteristic zero, (G, X) for a group G and X any G-representation such

that the the Zariski closure of the image of G in GL(X) is not virtually a torus.

(ii) In the below specified cases,
(
Uq, X

)
for a quantum enveloping algebra Uq = Uq(g) (in the

sense of [19] or [2]) and X any nontrivial tilting Uq(g)-representation (meaning not a direct
sum of one dimensional Uq-representations). The cases are:

• K is arbitrary, and q is not a root of unity.

• K is an algebraically closed field of characteristic zero, and q is a root of unity.

(iii) For a field of characteristic zero, (SBim, X) for Soergel bimodules SBim attached to an
affine Weyl group and X ∈ SBim a generating object.

Proof. (a). A special case of (b).
(b). We can and will assume that X is a generating object: if that is not the case then we

would go to a smaller tensor category. By [5, Proposition A.1], every projective indecomposable
object of C is a direct summand of X⊗d for some d ∈ Z≥0.

Let us first analyze the subgraph Γp of the fusion graph Γ that contains only vertices for the
projective indecomposable objects. We call this the projective cell, and we claim it is strongly
connected and basic. To see this we first note that [5, Proposition A.1] also gives us that
the regular object appears in some tensor power of X. Then [9, Section 3.3] implies that the
projective cell is of maximal PF dimension since going from using Grothendieck classes of simple
objects to compute PF dimensions, as in [9], to indecomposable objects can only decrease the
PF dimension. That the projective cell is strongly connected also follows from the existence of
the regular objects in some tensor power of X.

Moreover, recall that projectives form a ⊗-ideal, see e.g. [9, Proposition 4.2.12]. This also
implies by [5, Proposition A.1] that no strongly connected component without projective inde-
composable objects is final since there is always a path to the projective cell.

Since every finite tensor category has only finitely many indecomposable projective objects,
this problem is positively recurrent.

(c). In this case Γ is finite.
(i). As in the proof of Theorem 4.18, the Jacobson–Morozov theorem implies that we will

find SL2 ⊂ GL(X), and Lemma 4.19 and Lemma 4.20 then imply the claim.
(ii). If q is not a root of unity, then this problem has the same combinatorics as (i), see for ex-

ample [2, Corollary 7.7], so we are done. In the other case there are projective Uq-representations
and they appear in some tensor power of X:

Lemma 4.24. Every projective indecomposable tilting Uq-representation is a direct summand of
X⊗d for some d ∈ Z≥0.

Proof. We use two results from [2, Theorem 9.12]: there are enough projective tilting objects,
and every projective tilting object is also injective. With these two facts, the proof of the lemma
is, mutatis mutandis, the same as [5, Proof of Proposition A.1].

Using Lemma 4.24, we get the the only final class can be the projective cell, and it remains
to argue that this cell is transient. The results in [1, Theorem 3.1 and Remark 2.(2)] imply
that the projective cell (called the Steinberg component in [1]) is a copy of the whole category
in the semisimple case upon factoring the Steinberg Uq-representation. This implies that the
projective cell is transient: The majority of paths in the starting category will eventually be in
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the projective cell, so they move away from the origin. Then the equivalence in [1, Theorem
3.1 and Remark 2.(2)] jumps back to the original problem for which we already know that the
majority of paths eventually leave the origin.

(iii). Using the correspondence between the cells from [22], very similar as for the quantum
group at a complex root of unity. Details are omitted.

Remark 4.25. One could guess that the analogs of Proposition 4.23.(i) is also true in positive char-
acteristic, e.g. for G = SL2(F̄p) this follows from Example 4.10. Similarly, Proposition 4.23.(ii)
might also be true for quantum groups in the mixed case, and Proposition 4.23.(iii) might be
true for all infinite Coxeter types and regardless of the characteristic of the underlying field. 3

5. Asymptotics for positively recurrent categories

Positively recurrent categories are essentially finite with respect to growth problems as justified
by the main result of this section. However, we need a special case of positively recurrent growth
problems, see Definition 5.4.

Convention 5.1. In this section, all growth problems that we consider are positively recurrent
in the sense of Definition 4.11. 3

First, let us consider the fusion graph Γ associated to some growth problem (R,C). Take
the naive cutoff (Γk)k∈Z≥0

and let λk = PFdimΓk (since Γk is finite, this is the classical PF
dimension.) Let λsec

k be any second largest eigenvalue of Γk.

Lemma 5.2. We have λ = limk→∞ λk ∈ R≥0 and λsec = limk→∞ λsec
k ∈ C.

Proof. Note that 0 ≤ λk ≤ λk+1 so that it remains to argue why λ = limk→∞ λk ̸= ∞. As usual
in the theory, see e.g. [15, Section 7], 1/λ is the radius of convergence of a certain power series,
which in turn has a positive radius of convergence on any FBC. Thus, we get λ < ∞. The second
largest eigenvalue exists in R≥0 by the same reasoning and λ < ∞ so |λsec| < ∞.

Using Lemma 5.2, we will write λ = limk→∞ λk and λsec = limk→∞ λsec
k for a given positively

recurrent growth problem.

Definition 5.3. We call λ the (positively recurrent) PF dimension of (R, c), and we write
PFdimfc = λ. (Here we always use the naive cutoff.) 3

Definition 5.4. Let (R, c) be a positively recurrent growth problem as defined in Definition 4.11.
We say (R, c) is sustainably positively recurrent if:

(a) There is only one basic class.

(b) There exists ε > 0 such that the PF dimensions of the nonbasic classes are smaller than
λ− ε.

(c) We have (n 7→ m
(n)
ij ) ∈ o

(
(λ+ ε)n

)
for all ε ∈ R>0.

We also say positively recurrent and sustainable instead of sustainably positively recurrent. 3

We will denote the basic class from Definition 5.4.(a) by CFBC(Γ), which necessarily positive
recurrent and a final basic class. However, CFBC(Γ) is not assumed to be finite or final in Γ.

Example 5.5. All finite growth problems are sustainably positively recurrent. This includes all
positively recurrent growth problems in Theorem 4.18. 3
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Here are more examples of positively recurrent and sustainable growth problems:

Proposition 5.6. All the positively recurrent examples in Proposition 4.23 are sustainable. In
all these cases we have PFdimfX ∈ R≥1, and CFBC(Γ) is finite and final in Γ.

Proof. We have PFdimfX ∈ R≥1 since the fusion graphs have edge weights in Z≥1. This follows
from the argument in Example 3.9 together with the observation that every vertex admits a path
to the projective cell.

Second, the growth problem in (a) is a special case of the one in (b), while the growth problem
in (c) has a finite fusion graph. So it remains to go through in Definition 5.4 (a)-(c) for case (b),
which we do after the following lemma.

Lemma 5.7. For any growth problem as in Proposition 4.23.(b) we have

b(n) ∼ f(n) · (PFdimfX)n with f : Z≥0 → (0, 1] periodic with finite period.

Proof. In this case let ln = ℓ(X⊗n) where ℓ is the length. The fusion graph of the growth problem
associated to the length is finite and it follows (e.g. by copying [16]) that

l(n) ∼ f̃(n) · (PFdimX)n with f̃ : Z≥0 → (0, 1] periodic with finite period,

where PFdimX is the usual PF dimension of this finite growth problem. Note that

bn ≤ ln

since bn is defined to count indecomposable summands, while ln counts simple objects in the
Jordan–Hölder filtration. Then [5, Proposition A.1] implies that this PFdimfX is the one from
Lemma 5.2.

As the next step, using the universal grading group of C, one can see that b(n)/(PFdimfX)n

has only finitely many limiting points. This implies that the generating function of bn satisfies
the properties necessary to run e.g. [20, Section 7.7], and we get b(hn+ s) ∼ th,s · (PFdimfX)hn

for some th,s ∈ (0, 1], where h is the number of limiting points and s ∈ {0, ..., h− 1}. Collecting
the scalars th,s ∈ (0, 1] into a piecewise constant function f : Z≥0 → [0, 1) shows the claim.

Property (a). As in the proof of Proposition 4.23, by [5, Proposition A.1] the unique FBC is
the projective cell, and its PF dimension is PFdimfX. We additionally argue now that all other
strongly connected components have PF dimension < PFdimfX. Indeed, assuming the contrary
leads to a contradiction with Lemma 5.7. This is easy to see, for example in the toy case

Γ = PFdimfX PFdimfX , M(Γ) =
(

PFdimfX 0
1 PFdimfX

)
,

one already gets b(n) ∼ n
PFdimfX

· (PFdimfX)n. Recalling that all strongly connected components
have some path to the projective cell, the general case then reduces to at least this toy case.

Property (b). Similarly as in (a), having basic classes Bn with limn→∞ PFdimV JBn =



Asymptotics in infinite monoidal categories 189

PFdimfX contradicts Lemma 5.7. For example,

Γ(Kl′) =

...

1

1− 1 1− 1/2 1− 1/3 1− 1/4 1− 1/5 1− 1/6

,

has b(n) ∈ Ω(1.5n) while PFdimfX = 1.
Property (c). As in the points above, nonsustainable would contradict Lemma 5.7 so we are

done. Roughly, consider the following modification of the graph from (4.16):

Γ(Kl′′) =

...

21 22 23 24 25 ...

1

The growth of bn in this case overshoots (PFdimfX)n = 1n and we have b(n) ∈ Ω(1.5n).
Final and finite in Γ. We already discussed this above.

Fix the naive cutoff Γk. Let hk be the period and ζk = exp(2πi/hk). Similarly as in [16,
Section 1], let us denote the right (the one for the left action) and left (the one for the right
action) eigenvectors for ζikλk by vki and wk

i , normalized such that (wk
i )

T vki = 1. Let vki (w
k
i )

T [1]

denote taking the sum of the first column of the matrix vki (w
k
i )

T . Using this, we define

ak(n) =
(
vk0 (w

k
0)

T [1] · 1 + vk1 (w
k
1)

T [1] · ζn + vk2 (w
k
2)

T [1] · (ζ2)n + ...

+vkh−1(w
k
h−1)

T [1] · (ζh−1)n
)
· λn.

Similarly, but directly for Γ, we can define

a(n) =
(
v0(w0)

T [1] · 1 + v1(w1)
T [1] · ζn + v2(w2)

T [1] · (ζ2)n + ...

+vh−1(wh−1)
T [1] · (ζh−1)n

)
· λn,

(5.8)

where h is the period of the FBC of Γ (for strongly connected graphs like the FBC this is defined
in e.g. [15, Begin of Section 7.1]). Note that, a priori, a(n) might not be a finite expression.

Theorem 5.9. Assume that the growth problem (R,C) is sustainably positively recurrent. Then:
(a) We have a(n) ∈ R≥0 and

b(n) ∼ a(n).

(b) If the FBC is final in Γ, the limit limk→∞ ak(n) exists and is equal to a(n).

(c) If the FBC is finite and final in Γ, then the convergence of limn→∞ bn/an = 1 is geometric
with ratio |λsec/λ| and |bn − an| ∈ O

(
(λsec)n + nd

)
for some d ∈ R>0.
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Remark 5.10. [16] states an analog of Theorem 5.9 for arbitrary finite graphs, but the statement
itself is a bit nasty. We decided not to include its positively recurrent analog in this paper. 3

Proof of Theorem 5.9. We start with the statement about the asymptotic and then proof the
other claims that we call “Finite approximation” and “Variance”.

Asymptotic. Condition (a) of Definition 5.4 implies that there is a unique basic class CFBC(Γ)

(which is a final basic class, of course). Note that λ < ∞ by Lemma 5.2. Moreover, λ = 0 if and
only if the growth problem is zero, and hence we can and will assume that λ ∈ R>0.

We borrow from and adjust [15, Section 7.1]. There are two differences between our setting
and [15, Section 7.1] to keep in mind: Firstly, and crucial, we consider graphs that are poten-
tially not strongly connected. Secondly, we can have a period, but that is a rather harmless
generalization. We postpone this discussion to the end of the proof and assume first that we are
in the aperiodic situation.

Unless stated otherwise, our indexing set below will be the vertices of the fusion graph Γ

associated to (R,C), and these vertices are often called i, j.

Notation 5.11. To have the same conventions as [15] in this proof, let T be the transpose of
M . 3

We define three generating functions T , L and R:

Tij(z) =
∑

n∈Z≥0

t
(n)
ij zn, Lij(z) =

∑
n∈Z≥0

lij(n)z
n, Rij(z) =

∑
n∈Z≥0

rij(n)z
n,

L′
ij =

∑
n∈Z≥0

nlij(n)z
n, µ(i) = λ−1L′

ii(λ
−1) (with µ(i) = ∞ allowed),

where the coefficients of L and R are defined as follows. The coefficient lij(n) is the sum of the
labels of the paths i → j of length n that do not return to i with < n steps. Similarly, rij(n) is
the sum of the labels of the paths i → j of length n that do not return to j with < n steps.

Step 1. We start with two crucial lemmas. We define λij = lim supn→∞
n

√
t
(n)
ij .

Lemma 5.12. We have λij ≤ λ for all i, j ∈ Γ.

Proof. Immediate from (n 7→ t
(n)
ij ) ∈ o

(
(λ+ ε)n

)
for all ε ∈ R>0.

Lemma 5.13. For all i, j ∈ Γ, the radii of convergences of Tij(z), Lij(z) and Rij(z) are ≥ λ−1.

Proof. The radius of convergence of Tij(z) is λ−1
ij by the Cauchy–Hadamard theorem, and the

result follows from Lemma 5.12 and the inequalities lij(n) ≤ t
(n)
ij and rij(n) ≤ t

(n)
ij .

We are now ready to go through statements in [15, Section 7.1]. The references below are all
with respect to [15].

Step 2. Most parts of Lemma 7.1.6 are formal and work verbatim. Some of the arguments
need Lemma 5.13, but then can be proven mutatis mutandis with it.

Step 3. Next, we see a mild modification. Namely, Lemma 7.1.7 for i, j ∈ Γ in the same
component works mutatis mutandis since λ is the leading eigenvalue so λ−1 is the minimal radius
of convergence, see Lemma 5.13. Moreover, Lij(λ

−1) is finite in general if there is a path from j

to i, and vice versa for Rij(λ
−1), by the same arguments as in [15, Section 7.1].
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Step 4. Lemma 7.1.8 remains true with the following changes. If i ∈ CFBC(Γ), then
Tij(λ

−1) = ∞ and Lii(λ
−1) = 1 since the FBC is recurrent. We do not need the case where

i /∈ CFBC(Γ).
Step 5. Choose some enumeration of the vertices of Γ. For each i ∈ CFBC(Γ) define a row

and a column vector

ℓ(i) =
(
Li1(λ

−1) Li2(λ
−1) ... Lij(λ

−1) ...
)
,

r(i) =
(
R1i(λ

−1) R2i(λ
−1) ... Rji(λ

−1) ...
)T

.

These are well-defined by Step 3.
Step 6. Lemma 7.1.9.(i) remains true, that is, the ℓ(i) and the r(i) are left and right λ-

eigenvectors of the action matrix T :

ℓ(i)T = λ · ℓ(i), T r(i) = λ · r(i).

(For the meticulous reader who want to double check that r(i) is an eigenvector we point out
that the Rii in Lemma 7.1.6.(viii) should be a Rjj .)

Choose any i ∈ CFBC(Γ) and define

ℓ = ℓ(i), r = r(i).

It is easy to see that the choice of the defining i ∈ CFBC(Γ) is not important for what we will
do below.

Step 7. Lemma 7.1.10 remains true, with the same proof, but needs some adjustments.
Firstly, the vectors x and y are assumed to have a nonzero entry corresponding to some k ∈
CFBC(Γ). Then x and y are strictly positive on the entries corresponding to all k ∈ CFBC(Γ).
This uses irreducibility of the matrix supported on CFBC(Γ). (ii) and (iii) then remain true
without further change.

Step 8. For Lemma 7.1.11 we replace xT ≤ λx and Ty ≤ λy by xT = λx and Ty = λy and
we keep the same assumptions on x and y from the previous step. We renormalize x and y such
that xi = 1 and yi = 1, and the previous step ensure that x − l(i) and y − r(i) are nonnegative
and have a zero entry on CFBC(Γ). We then obtain that x− l(i) and y − r(i) are supported on
the nonbasic classes. We can extract from x − l(i) and y − r(i) eigenvectors of a matrix whose
spectrum does not contain λ, because of the condition (b) in Definition 5.4. We finally obtain
that x = l(i) and y = r(i).

Step 9. Since the FBC is positively recurrent, we get L′
ii(λ

−1) < ∞ for i ∈ CFBC(Γ). It
follows that l · r = µ(i) < ∞ (dot product) by copying the calculation in the proof of Lemma
7.1.14.

Step 10. Lemma 7.1.15 remains true (it is independent of the growth problem).
Step 11. Theorem 7.1.18 has two cases: for i /∈ CFBC(Γ) we are in case (i), and for i ∈

CFBC(Γ) we are in case (ii). The justification for i /∈ CFBC(Γ) is clear, and the proof for
i ∈ CFBC(Γ) works mutatis mutandis as in [15], using the adjustments made in the steps above.

Step 12. Lemma 7.1.19.(i) works verbatim. For Lemma 7.1.19.(ii) there are three cases. If
i ∈ CFBC(Γ), then the first equality holds. Moreover, for j ∈ CFBC(Γ) the equality between the
first and the last term holds. Thus, for i, j ∈ CFBC(Γ) Lemma 7.1.19.(ii) works in the same way
as in [15].

Step 13. Lemma 7.1.20 works with the extra assumption that i, k ∈ CFBC(Γ) in part (a) of
(i), j, k ∈ CFBC(Γ) in part (b) of (i) and i, j ∈ CFBC(Γ) in (ii).
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Step 14. As in [15], steps 1-13 prove [15, Theorem 7.1.3.(f)] for sustainably positively recurrent
growth problems.

Step 15. Now, we can mimic the proof of [16, Theorem 7] to obtain the precise asymptotic
on b(n).

For periodic matrices evaluate the power series at ζkλ for ζ a root of unity. With this change
all the above work mutatis mutandis. See also the final part of [15, Section 7.1].

Finite approximation. Since the FBC is final, the vector ℓ is supported by the FBC. The
first column of the matrices in (5.8) are then supported by the FBC. Hence, [15, Theorem 7.1.4]
applies and we are done.

Variance. As in the previous point, but since the FBC is now assumed to be finite, we can
use [16, Theorem 1].

Remark 5.14. For Krull–Schmidt monoidal categories with finitely many indecomposable objects
Theorem 5.9 recovers the main results of [16] (up to the point made in Remark 5.10). 3

Example 5.15. Let us come back to Example 4.15. The random walk on the fusion graph Γ in
(4.16) is positively recurrent. Thus, Theorem 5.9 applies and we get

bn ∼ 1
4 · 3n

(note that |G| = 4 and
∑

L simples dimF2 L = 1) using the finite cutoffs as indicated in (4.16).
The second largest eigenvalue for all finite cutoffs is zero, so the variance is bounded by some
polynomial function. Indeed, we get:

b(n)

a(n)

5 10 15 20

0.9

1.0

1.1

1.2

1.3

Klein four group

,

b n - a n

0.5 n

5 10 15 20

2

4

6

8

10

Klein four group

.

The left plot is a logplot, the right is a standard plot. 3

Example 5.16. Another example from the realm of finite groups is the following. Consider
G = PSL2(F7). Over F2 the representation theory of G is not semisimple. In this case there are
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two three dimensional simple representations, and let X be any of these two. The choice of this
example is motivated by [7, Theorem 1.4], and is the smallest example on that list.

The fusion graph of the associated growth problem (G, X) can be seen to be (illustrated below
with a cutoff)

, (5.17)

M(PSL2) =



1 3 2 1 0 0 2 2 2 6 4 6 8 8 8 12

0 1 2 0 0 0 0 0 0 2 0 2 4 4 4 4

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0



.

The projective cell is illustrated at the top and has the adjacency matrix

M =

(
1 0 1 0
3 1 0 1
2 2 0 0
1 0 1 0

)
.

The dimensions of the projective indecomposables, in the order as in (5.17), are 8, 16, 16, 8. The
eigenvalues of M are {3, 12(−1 + i

√
7), 12(−1− i

√
7), 0}, and our dominating growth rate is 3.

The dimensions of the indecomposables along the bottom in (5.17) is

1, 3, 9, 11, 17, 35, 25, 43, 49, 51, 57, 75, 65, 83, 89, 91, 97, 115, 105, 123, 129, ...,

pattern : + 6,+2,+6,+18,−10,+18, repeat,

generating function :
16x5 + 5x4 + 7x3 + 8x2 + 3x+ 1

(x− 1)2(x3 + 2x2 + 2x+ 1)
,

and this pattern continues. From this pattern one gets the whole graph.

Moreover, one can check that vk0 (wk
0)

T [1] for the leading eigenvectors converges to 15
168 ≈ 0.089
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as k → ∞. (Note that |G| = 168 and
∑

L simples dimF2 L = 15.) Thus, Theorem 5.9 implies that:

bn ∼ 15

168
· 3n.

b(n)

a(n)

5 10 15 20

1

2

3

4

PSL(2,7)

,

b n - a n

1.414
n

5 10 15 20

0.1

1

10

100

1000

PSL(2,7)

.

Note that |λsec| = |12(−1 + i
√
7)| =

√
2 ≈ 1.414. The convergence is geometric with ratio√

2/3 = |12(−1 + i
√
7)|/3 ≈ 0.4714. 3

Example 5.18. Let W be a finite Coxeter group and SBim = SBim(W ) the associated
monoidal category of Soergel bimodules. Let X ∈ SBim be some generating object. The growth
problem (SBim, X) is positively recurrent and has the following asymptotics.

In the Grothendieck ring, the group ring ZW , write [X] =
∑

s∈W ms ·s where ms ∈ Z≥0. One
gets

b(n) ∼ 1

|W |
·
( ∑
s∈W

ms

)n
.

This follows directly from Theorem 5.9 since one only has one FBC corresponding to the inde-
composable Soergel bimodule associated with the longest word. 3

Remark 5.19. In Example 5.18, we lack a general expression for the second largest eigenvalue,
except in the dihedral case for X being the indecomposable object corresponding to the product of
the two simple reflections. For this growth problem, the eigenvalue depends on a parity condition
related to whether the order of W (always even) is divisible by four. Using, for example, [26,
Section 3] one can show that the coefficients of the minimal polynomial of the second largest
eigenvalue in these cases are the signed versions of the sequences [21, A085478] and [21, A030528],
respectively. Thus, the second largest eigenvalues are closely related, though not identical, to
the PF roots of the Morgan–Voyce polynomials. A more general statement would be desirable.
3
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