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Abstract

We show that the E1-equivalence C•(S2) ≃ H•(S2) does not intertwine the inclusion of constant
loops into the free loop space S2 → LS2. That is, the isomorphism HH•(H

•(S2)) ∼= H•(LS2)

does not preserve the obvious maps to H•(S2) that exist on both sides. We give an explicit
computation of the defect in terms of the E∞-structure on C•(S2). Finally, we relate our
calculation to recent work of Poirier-Tradler on the string topology of S2.
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1. Introduction

For a simply connected space X, Jones ([5] and corrected in [12]) gives an isomorphism

ψ : HH•(N
•(X)) ∼= H•(LX),

between the Hochschild homology of the (normalized) cochain algebra N•(X), and the coho-
mology of the free loops space LX = Map(S1, X). As Hochschild homology only depends on
N•(X) as a dg-algebra (and not as an E∞-algebra) one obtains that if X is E1-formal there is
an isomorphism

ϕ : HH•(H
•(X)) ∼= H•(LX).

Since H•(X) is a graded-commutative algebra there exists a natural map

f : HH•(H
•(X))→ H•(X).

On the geometric side the inclusion of constant loop X → LX induces a map

h : H•(LX)→ H•(X).
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However, as explained by [12], the isomorphism ψ uses the E∞-structure of N•(X) and thus it
does not follow that ϕ intertwines the two maps f and h, and indeed for X = S2 this is not the
case.

Theorem 1.1. The diagram

HH•(H
•(S2,Z2)) H•(S2,Z2)

H•(LS2,Z2) H•(S2,Z2)

f

ϕ

h

does not commute.

As the map HH•(N
•(X)) → H•(N•(X)) can be expressed in terms of the E∞-operations,

this in particular shows that N•(S2) is not E∞-formal as an E∞-algebra. Note that using fac-
torization homology (over the inclusion of an annulus into a disk, see for instance [1, Proposition
5.3]) one obtains that such an “augmentation map" only depends on the framed E2-structure on
N•(X). We thus obtain that

Corollary 1.2. The E∞-algebra N•(S2) is not formal as a framed E2-algebra (whereas it is
formal as an E2-algebra, see [7, 4]).

Let us briefly explain the relevance of the above to string topology. Evaluation on the fun-
damental class of S2 gives a map H2(S2,Z2) → Z2. From the above we thus get two distinct
elements in HomZ2(HH2(H

•(S2,Z2)),Z2), which we denote by F and F̃ for the elements induced
by f and h◦ϕ, respectively. Recall that elements in HomZ2(HH2(H

•(S2,Z2)),Z2) can be identi-
fied with (homotopy classes of) bimodule maps with higher homotopiesH•(S2,Z2)→ H•(S

2,Z2)

in the sense of Tradler [11]

Theorem 1.3. The bimodule map with higher homotopies F̃ corresponding to

HH2(H
•(S2,Z2))

ϕ→ H2(LS2,Z2)→ Z2

coincides with the local bimodule map with higher homotopies constructed in [9].

Using different terminology we can interpret the above as follows. Given an E∞-algebra A
together with a map A→ Z2[d] (which we call the fundamental class) there is a canonical map
HH(A) → A → Z2[d] which we can ask to be a right Calabi-Yau structure. Note that in this
case the fundamental class is unique, so that we can say that E∞ algebras satisfying a version of
Poincaré duality have a canonical right Calabi-Yau structure. However, the Calabi-Yau structure
does not just depend on the underlying E1-algebra structure of A. For A = H•(S2,Z2) we obtain
two Calabi-Yau structures, one by considering A to be a commutative algebra and the other by
considering A as the E∞ cochain algebra on S2. The main result of [9] is then that the latter of
those two structures is the geometrically correct one.

1.1 Conventions. Throughout the article we will be exclusively working over Z2, so that
all of the signs are only there for “aesthetic” reasons. We denote by Ch the category of ho-
mologically graded chain complexes of Z2-modules, equipped with the structure of a closed
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monoidal symmetric category. The differential on the tensor product of two elements is given by
d(x⊗ y) = dx⊗ y+ x⊗ dy. We denote the internal hom between two chain complexes X and Y
as Ch(X,Y ), which is itself a chain complex, that in degree n consists of linear maps of degree
n. The internal hom has differential (dφ)(x) = dφ(x) + φ(dx).

1.2 Organisation of the paper. Section 2 recalls the Hochschild complex over which we
primarily work. In section 3, we discuss the Jones-Ungheretti isomorphism, establish it in more
explicit detail for computational purposes, and the homotopy-coherent natural transformations
involved. Section 4 then translates this map into the language of the surjection operad of [2].
This allows for us to demonstrate both main theorems in Section 5.

2. Hochschild Homology of H•(S2,Z2)

Given an associative differential graded algebra A, the cyclic bar construction of A is the sim-
plicial cochain complex

Bcyc(A) : ∆op −→ Ch

n 7→ A⊗n+1

with simplicial maps given by

δj(a0 ⊗ · · · aj ⊗ aj+1 ⊗ an) =a0 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ an
δn(a0 ⊗ · · · ⊗ an) =ana0 ⊗ · · · ⊗ an−1

σi(a0 ⊗ · · · ⊗ an) =a0 ⊗ · · · ai ⊗ 1⊗ ai+1 ⊗ · · · ⊗ an

Hochschild homology HH(A) is then defined as the homology of the (direct sum) totalization of
N cyc(A).

Let us now consider A = N•(S2,Z2). More precisely, we let S2 = ∆2/∂∆2 be the simplicial
two-sphere, the triangulation of the sphere consisting of one unique non-degenerate 2-simplex,
one non-degenerate 0-simplex and no other non-degenerate simplices. Then we take simplicial
chains on S2. Note that in this case there is no differential, and we get that

N•(S2,Z2) = H•(S2,Z2),

as associative algebras with Alexander-Whitney product on the left (this is not true when con-
sidered as E∞-algebras which the main result of the paper will show).

Let α ∈ H2(S2,Z2) denote the generator of H2(S2,Z2). By taking normalized chains we
obtain that

HH•(H
•(S2,Z2)) =

⊕
n≥0

H•(S2,Z2)⊗H•(S2,Z2)
⊗n
,

that is, all the differentials vanish and we obtain that HH•(H
•(S2,Z2)) has a basis given by

elements of the form 1⊗ α⊗ · · · ⊗ α and α⊗ α⊗ · · · ⊗ α. In particular, we obtain

HH2(H
•(S2,Z2)) = Z2α⊕ Z2(1⊗ α⊗ α).
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3. The Jones-Ungheretti isomophism

We recall the construction of the isomorphism

HH•(N
•(X,Z2)) ∼= H•(LX,Z2),

given in [12].
We adopt the definition of the free loop space as the following simplicial mapping space (See

[6] and [5] for more details). Let S1
• = ∆1/∂∆1 be the simplicial circle. We can then form the

cosimplicial space
G : [n] 7→ Map(S1

n, X) = Xn+1

which totalizes to the free loop space LX. Applying normalized cochains we obtain a simplicial
cochain complex

G : ∆op −→ Ch

[n] 7→ N•(Xn+1),

which totalizes to cochains on LX assuming X is simply connected.

Theorem 3.1 (Ungheretti). There exists a zig-zag of equivalences of simplicial cochain complexes

Bcyc(N•(X))
∼←− QBcyc(N•(X))

∼−→ G.

In particular, this induces an isomorphism

ϕ : HH•(N
•(X))

∼=−→ H•(LX),

in case X is simply-connected.

Here QBcyc(N•(X)) is the standard resolution of a simplicial chain complex which we recall
below.

3.1 Homotopy Coherent Natural Transformations. We need to define our homotopy
coherent natural transformations, which underpin the construction of the mapping ϕ we require.
The following formulation comes from [12], adapted from [3] to the context of chain complexes.

Definition 3.2. Let I be a small category.
1. Let F : I → Ch be an I-diagram in Ch. The standard simplicial resolution Q•F of F is

given by
QnF (i) :

⊕
[i0→···→in→i]∈Nn(I/i)

F (i0).

We denote its geometric realization by QF : I → Ch.
2. Let F,G : I → Ch be two diagrams in Ch, we define the cosimplicial chain complex of

homotopy coherent natural transformations hc(F,G)• : ∆→ Ch as

hc(F,G)n := Ch(QnF,G) =
∏

ϕ∈NnI

Ch(F (i0), G(in)),

where the product runs over the nerve N•I of I, that is all strings [i0 → · · · → in] of
n-composable arrows. Let hc(F,G) ∈ Ch be the totalization of hc(F,G)•.
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For every map ψ : x → y we can find a morphism Aψ : F (x) → G(y) of degree one, and for
composed morphisms θ : x → y → z we get a map of degree 2, Aθ : F (x) → G(z). These maps
are not necessarily chain maps, but are subject to certain coherence arguments.

Example 3.3. Consider the category I = {a → b}, consisting of two objects a, b and one
non-identity morphism: a→ b. Given F,G : I → Ch, one then finds that:

hc(F,G)0 =Ch(F (a), G(a))⊕Ch(F (b), G(b)),

hc(F,G)1 =Ch(F (a), G(b)),

hc(F,G)n =0, for n ≥ 2.

Note: This is the normalized cosimplicial chain complex, by taking the quotient of identity
morphisms, the unnormalized complex would contain additional summands in each degree.
We can then find some element α ∈ hc(F,G)1 for every pair of elements (φ,ψ) ∈ hc(F,G)0 that
represents the failure to commute, that is

gφ− ψf = dα.

F (a) F (b)

G(a) G(b)

φ

f

α
ψ

g

Let now I = ∆op and let us spell out the definition of hc(F,G) in more detail. For instance, a
0-cycle in the chain complex hc(F,G) is given by (A0, A1, . . . ) where each Am = (Amϕ )ϕ∈Nm(∆op)

is a collection of map Am[i0→···→im] : F (i0)→ G(im). They satisfy the recurrence relation∑(
δjAm−1

)
ϕ
= dAmϕ (1)

where (δjAm−1)ϕ considers the contraction of the degree m map ϕ into a degree m − 1 one by
“covering up” the j-th map: [i0 → · · · → ij−1 → ij+1 → · · · → im]. The precise structural maps
are

(δiA)ϕ =


F (i0)

F (i0→i1)−−−−−−→ F (i1)
Ad0ϕ−−−→ G (in+1) if i = 0,

F (i0)
Adiϕ−→ G (in+1) if 0 < i < n+ 1,

F (i0)
Adn+1ϕ−−−−−→ G (in)

G(in→in+1)−−−−−−−−→ G (in+1) if i = n+ 1.

Let us denote by Tot(F ) ∈ Ch the (direct sum) totalization of F : ∆op → Ch. We then
obtain a chain map

hc(F,G)→ Ch(Tot(QF ),Tot(G))). (2)

The following lemma exhibits an explicit natural section of the map Tot(QF )→ Tot(F ). Let us
define (non-chain) maps

Mk : hc(F,G)→
∏
i

Ch(F (i+ k), G(i))

by the formula (Mk)l =
∑

i1,...,ik
A[σi1 ,...,σik ]

where σi are the face maps in ∆op and

[σi1 , . . . , σik ] = [[l + k]
σi1−−→ [l + k − 1]→ · · · → [l + 1]

σik−−→ [l]] ∈ Nk(∆
op)
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Lemma 3.4. The maps (M0,M1, . . . ) define a chain map

M : hc(F,G)→ Ch(Tot(F ),Tot(G)),

natural in G and such that the composite

hc(F,G)→ Ch(Tot(F ),Tot(G))→ Ch(Tot(QF ),Tot(G))

is naturally homotopic to (2).

Proof. By definition of the differential on hc(F,G) we obtain that

dMk =

(∑
i

F (σi)

)
◦Mk−1 +Mk−1 ◦

(∑
i

G(σi)

)
,

where all the intermediate terms vanish (using (
∑

i σ
i) ◦ (

∑
j σ

j) = 0). But this is exactly the
differential on Ch(Tot(F ),Tot(G)).

For the second part of the statement, let us first set G = F and let ν ∈ hc(F, F ) be the
element corresponding to the augmentation QF → F . Then we have M0(ν) = id and Mk(ν) = 0

for k > 0 and hence ν is sent to the identity. The rest follows from naturality as follows. Let
ψ : Tot(F ) → Tot(QF ) be the image of the identity Ch(QF,QF ) under M . Then M for a
general G is given by hc(F,G) → Ch(Tot(QF ),Tot(G)) followed with precomposition with ψ.
But ψ is a section of Tot(QF )→ Tot(F ) by the previous observation.

Remark. The above argument could be streamlined a bit using the following. Let ch be the Z2-
linear category with objects the natural numbers and morphisms ch(i, i) = Z2, ch(i+ 1, i) = Z2

and ch(i, j) = 0 otherwise. Taking unnormalized chains C• can then be seen as a functor
ch→ Z2∆

op. With this we obtain a map

C•(QF ) = C•(B(Z2∆
op,Z2∆

op, F ))← B(ch, ch, C•(F )) = QC•(F ),

Let F = Bcyc(N•(X)) and G = N•(Map(S1
• , X)) be as above.

Theorem 3.5. [Ungheretti] There exists a map ϕ ∈ hc(F,G) (canonical up to homotopy)
extending the Alexander-Whitney maps F (k − 1) = N•(X)⊗k → N•(Xk) = G(k − 1). In
particular, we get an induced map

Tot(F )→ Tot(G)

More precisely, for an E∞-operad X naturally acting on N•(−) extending the (associative)
Alexander-Whitney product, [12] constructs a map of cosimplicial chain complexes∏

i0→···→in

X (i0 + 1)→
∏

i0→···→in

Ch(N•(X)i0+1, N•(Xin+1)) (3)

given by the following construction. For i0 → · · · → in denote ϕ : i0 → in their composition and
let p = (p1, . . . , pi0+1) : X

in+1 → Xi0+1 be the map induced by Map(S1
• , X). We then define the

map

X (i0 + 1) −→ Ch(N•(X)i0+1, N•(Xin+1))

o 7→
(
(a1, . . . , ai0+1) 7→ o(p∗1a1, . . . , p

∗
i0+1ai0+1)

)
.

The product of these maps over i0 → · · · → in defines (3). Using contractibility of X he then
concludes that the Alexander-Whitney maps extend to a unique up to homotopy element on the
left hand side.
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3.2 Unpacking. Recall that our main interest is in the composition

Ψ: HH2(N
•(S2))

∼=−→ H2(Tot(G)) = H2(Tot(N•(Map(S1
• , S

2)))→ H2(S2),

where the second map is induced from the map {pt} → S1
• and hence is given by the projection

Tot(G) → G(0). Moreover, we have seen that there are two classes; 1 ⊗ α ⊗ α and α, both of
which can be represented by cycles in the total complex of F≤2 = (F (2)→ F (1)→ F (0)). It
will thus suffice to unpack the restriction of the above map M : Tot(F )→ Tot(G) to Tot(F≤2).
That is we want to describe the maps M in the diagram

N•(S2)⊗3 = F (2) G(2) = N•(S2 × S2 × S2)

N•(S2)⊗2 = F (1) G(1) = N•(S2 × S2)

N•(S2) = F (0) G(0) = N•(S2)

δ

M0
2

M1
1

δ

δ

M0
1

M1
0

δ=0

M0
0=id

M2
0

satisfying

dM0 +M0d = 0

dM1 +M1d = δM0 +M0δ

dM2 +M2d = δM1 +M1δ.

Spelling out the formula in Lemma 3.4 we obtain that M0 = A0 are given by the Alexander-
Whitney products. For the other maps, let us denote by σ0, σ1 the two face maps [1] → [0] ∈
∆op([1], [0]) and by ν0, ν1, ν2 the face maps [2]→ [1] ∈ ∆op([2], [1]). We then obtain from Lemma
3.4

M1
0 = A1

σ0 −A
1
σ1 , (4)

M1
1 = A1

ν0 −A
1
ν1 +A1

ν2 (5)

M2
0 =

∑
i,j

Ai,j (6)

where
Ai,j := A2

[2]
νi→[1]

σj→[0]
: N•(X)⊗3 → N•(X).

The An’s (and hence the Mn’s) are iteratively constructed as the (homotopically) unique
solution of equation (1) holding on the left hand side of (3). We now describe a particular choice
of (some of) the An’s. For simplicity of notation we will (abusively) denote an element in the
source of (3) by its image. That abuse can alternatively be justified by the fact that (3) is
injective for general enough X.

Lemma 3.6. We can choose

A1
σ0 = 0

A1
σ1 =⌣1 : N

•(X)⊗2 → N•(X),
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where ⌣1∈ X (2) is satisfying
d(⌣1) =⌣ −⌣ ◦(12),

where ⌣∈ X (2) is the associative Alexander-Whitney product and ⌣ ◦(12) is the image under
the transposition (12) acting on X (2).

Proof. Recall from the proof in [12] that A1
σi are constructed by first verifying that δi ◦M0

0 −
M0

1 ◦ δi : N•(X)⊗2 → N•(X) is induced by an element in X (2) which is closed in X (2). Here
δi are the coboundary maps on F and G, respectively. Then A1

σi is a primitive of that element
(which exists by contractibility of X (2)). For i = 0 we are getting that δ0 −M0

1 δ
0 = 0. More

precisely, we check that the following diagram commutes

N•(X)⊗2 N•(X ×X)

N•(X) N•(X)

M0
1

δ0 ∆∗

=

a⊗ b π∗1(a)⌣ π∗2(b)

a ⌣ b a ⌣ b

where π∗i denotes the pullback from the i-th copy of X onto X × · · · × X and the map δ0

is the 0-th boundary in the Hochschild complex, i.e. the Alexander-Whitney multiplication on
N•(X). For the map ∆∗ we have that by naturality of the cup product

∆∗(π∗1(a)⌣ π∗2(b)) = ∆∗(π∗1)(a)⌣ ∆∗(π∗2)(b)

= (π1 ◦∆)∗(a)⌣ (π2 ◦∆)∗(b)

= a ⌣ b.

For the case i = 1 a similar computation using that the 1-st boundary on the Hochschild complex
is the multiplication in opposite order shows that

(δ1G −M1
0 δ

0
F )(x, y) = y ⌣ x− x ⌣ y.

Remark. Note that ⌣1 exists by contractibility of X (2). There is also a well-known formula
for it (see [10]).

Lemma 3.7. The map M2
0 is induced by V ∈ X (3) where V satisfies

dV = U

and U ∈ X (3) is the operation

U(x, y, z) := (x ⌣ y)⌣1 z + x ⌣1 (y ⌣ z) + (z ⌣ x)⌣1 y.

Proof. Note that dM2
0 = −M1

0 δ = A1
σ1δ =⌣1 ◦δ. It remains to verify that this equation holds

in X (3) and not merely in Ch(F (2), G(0)). By definition we have that M2
0 =

∑
i,j Ai,j and the

Ai,j are induced by elements in X (3) which we abusively denote by the same symbols. The Ai,j
satisfy

dAi,j = δjGA
1
νi +A1

σjδ
i
F .

According to the proof in [12] the right hand side is induced by an closed element in X (3). Let us
find the corresponding element for (i, j) = (1, 1) and (i, j) = (i, 0), the other case being similar.
For the first term δ1GA

1
ν1 , let A1

ν1 be induced by o1 ∈ X (3) by the formula

N•(X)⊗3 −→ N•(X ×X)

(a, b, c) 7→ o1(p
∗
1(a), p

∗
2(b), p

∗
3(c)).
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where (p1, p2, p3)(x, y) = (x, y, y). As δ1G = ∆∗ we compute that

∆∗o1(p
∗
1(a), p

∗
2(b), p

∗
3(c)) = o1(∆

∗p∗1(a),∆
∗p∗2(b),∆

∗p∗3(c)) = o1(a, b, c),

and hence δ1GA
1
ν1 is induced by o1. For the second term we directly see (using that A1

σ1 =⌣1)

that
A1
σ1δ

1
F (a, b, c) = a ⌣1 (b ⌣ c).

We conclude that dA1,1 is induced by the operation

(a, b, c) 7→ o1(a, b, c) + (a ⌣1 (b ⌣ c)).

Likewise, we obtain that dA1,0 = δ0GA
1
ν1 is induced by

(a, b, c) 7→ o1(a, b, c)

where we used that δ0G = δ1G. In particular, we observe that the o1 term cancels when we sum
over j = 0, 1 and we obtain the desired result.

4. Surjection Operad

We now wish to solve the equation
dV = U ∈ X (3),

explicitly and evaluate V (1⊗α⊗α) for X = S2. We shall use the surjection operad, as defined in
[2], as the model for X , which we briefly recall. Note that for our purposes we need not consider
signs (which are discussed in detail in loc. cit) so we have omitted them in the formulas for the
differential and operadic composition.

Definition 4.1 (Surjection Operad). The surjection operad X is the operad where each module
X (r)d is generated by the non-degenerate surjections u : {1, . . . , r + d} → {1, . . . , r}. Non-
surjective maps represent the zero element in X (r)d. Each map u : {1, . . . , r + d} → {1, . . . , r}
can be represented by a sequence (u(1), . . . , u(r+ d)). A surjection is degenerate when for some
1 ≤ i < r + d we have u(i) = u(i+ 1).

The differential is given by δ : X (r)∗ → X (r)∗−1

δ(u(1), . . . , u(r + d)) =
r+d∑
i=1

(u(1), . . . , û(i), . . . , u(r + d))

which gives the structure of a complex.

Example 4.2. Consider the element (4, 3, 1, 2, 1, 3, 5, 2) ∈ X (5)3. The differential is then given
by

δ(4, 3, 1, 2, 1, 3, 5, 2) = (4, 1, 2, 1, 3, 5, 2) + (4, 3, 2, 1, 3, 5, 2) + (4, 3, 1, 2, 3, 5, 2)

+ (4, 3, 1, 2, 1, 5, 2) + (4, 3, 1, 2, 1, 3, 5).

Example 4.3. The module X (2) is spanned by (1, 2), (1, 2, 1), (1, 2, 1, 2), . . . and (2, 1), (2, 1, 2),
(2, 1, 2, 1), . . . , where the latter are obtained from the former using the action of the transposition
(12). As explained in [2, Section 2.2.8], the induced operations on N•(X) are the classical ⌣i-
products. For instance, the equation δ(1, 2, 1) = (1, 2)−(2, 1) translates to d(⌣1) =⌣ −⌣ ◦(12).
We will thus denote (1, 2, 1) by ⌣1.
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Definition 4.4. Operadic composition is a map X (r)d⊗X (s)e → X (r+ s− 1)d+e for a product
u ◦k v ∈ X (r + s− 1)d+e by substituting occurrences of k in (u(1) · · ·u(r + d)) with elements of
(v(1), · · · , v(s+ e)).

Assume that k has n occurrences in (u(1), · · · , u(r+ d)). We then consider every splitting of
(v(1), · · · , v(s+ e)) into n components

(v (j0) , . . . , v (j1)) (v (j1) , . . . , v (j2)) · · · (v (jn−1) , . . . , v (jn))

where 1 = j0 ≤ j1 ≤ j2 ≤ . . . ≤ jn−1 ≤ jn = s+ e. Then for every value im such that u(im) = k,
replace it by the m-th component (v (jm−1) , . . . , v (jm)), we then increase the terms v(j) by
k− 1, and terms u(i) > k by s− 1. We then take the sum of the results of all possible splittings.

Example 4.5. We calculate (2, 3, 2, 1) ◦2 (4, 3, 4, 1, 2). We have five possible splittings of v =

(4, 3, 4, 1, 2) into 2 parts, given by
(4)(4, 3, 4, 1, 2)

(4, 3)(3, 4, 1, 2)

(4, 3, 4)(4, 1, 2)

(4, 3, 4, 1)(1, 2)

(4, 3, 4, 1, 2)(2).

Then, once we consider the shifts required, we get that

(2, 3, 2, 1) ◦2 (4, 3, 4, 1, 2) = (5, 6, 5, 4, 5, 2, 3, 1) + (5, 4, 6, 4, 5, 2, 3, 1) + (5, 4, 5, 6, 5, 2, 3, 1)

+ (5, 4, 5, 2, 6, 2, 3, 1) + (5, 4, 5, 2, 3, 6, 3, 1).

Example 4.6. Similarly, we obtain presentations for the operations (x ⌣ y) ⌣1 z and x ⌣1

(y ⌣ z). Namely,

(1, 2, 1) ◦1 (1, 2) = (1, 3, 1, 2) + (1, 2, 3, 2),

(1, 2, 1) ◦2 (1, 2) = (1, 2, 3, 1).

Proposition 4.7. We can represent

U = (1, 3, 1, 2) + (1, 2, 3, 2) + (1, 2, 3, 1) + (3, 2, 3, 1) + (3, 1, 2, 1).

Proof. Rewriting U given in Lemma 3.7 as an element of the surjection operad, we obtain

U = (1, 2, 1) ◦1 (1, 2) + (1, 2, 1) ◦2 (1, 2) + ((1, 2, 1) ◦1 (1, 2)) ◦ τ,

where ((1, 2, 1)◦1(1, 2))◦τ is obtained by applying the inverse of the standard 3-cycle to (1, 2, 1)◦1
(1, 2). Using the above example this gives the claimed formula for U .

We are now ready to solve dV = U for V using similar ideas to [8] by appending the digit 3
to each of our terms to give a solution.

Proposition 4.8. We can take

V = (3, 1, 3, 1, 2) + (3, 1, 2, 3, 2) + (3, 1, 2, 3, 1)

Proof. Standard calculation of the differential verifies it satisfies the relation dV = U .
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As explained in [2] the surjection operad naturally acts on normalized chains by a generalized
Alexander-Whitney formula (called the interval cut operation)

AW : X (n)⊗N•(X)→ N•(X)⊗n

and hence by taking the linear dual the element V defines

M2
0 : N

•(X)⊗3 → N•(X),

which we wish to evaluate on X = S2.
We compute AW (V ) on the unique non-degenerate 2-simplex, e2 ∈ N2(S2).

Proposition 4.9.

AW ((3, 1, 3, 1, 2))(e2) = e2 ⊗ e0 ⊗ e2
AW ((3, 1, 2, 3, 2))(e2) = e0 ⊗ e2 ⊗ e2
AW ((3, 1, 2, 3, 1))(e2) = e2 ⊗ e0 ⊗ e2.

Proof. We calculate these maps using the interval cut operation of [2]. For example, we consider
the interval cut associated to (3, 1, 2, 3, 1):

Figure 1: Interval cut of (3, 1, 2, 3, 1).

which gives

∆(n1____n2, n4____n5)⊗∆(n2____n3)⊗∆(0____n1, n3____n4)

where we then use the dimension of these simplices and the uniqueness of non-degenerate sim-
plices to give

AW ((3, 1, 2, 3, 1))(e2) = e2 ⊗ e0 ⊗ e2.

The other two computations follow similar steps.

Corollary 4.10. M2
0 (1⊗ α⊗ α) = α.

5. Proof of main theorems

Proposition 5.1. The map Ψ: HH2(N
•(S2))→ N2(S2) sends

Ψ(1⊗ α⊗ α) = α.

Proof. We have seen in previous section that Ψ(1 ⊗ α ⊗ α) = M2
0 (1 ⊗ α ⊗ α) which we just

computed.
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Proof of Theorem 1.1. First note that for the simplicial S2 we have that N•(S2) = H•(S2) as
algebras, which “implements” E1-formality of S2. In the diagram

HH•(N
•(S2)) H•(S2)

H•(LS2) H•(S2)

f

ϕ

h

we have just computed the composition Ψ = h ◦ ϕ and shown that it is non-zero on 1 ⊗ α ⊗ α.
The map f arises from the fact that N•(S2) happens to be commutative, so that Hochschild
homology has an augmentation given by projecting onto the A-summand. In particular, it maps
1⊗ α⊗ α to zero.

To show Theorem 1.3 let us first recall terminology from [11]. An A-bimodule map up to
homotopy is defined to be (a homotopy class of) a chain map of A-bimodules

F : B(A,A,A)⊗A B(A,A,A)→ HomZ2(A,Z2)

where B(A,A,A) is the two-sided bar resolution. Such a map has components

Fpq : A
⊗p ⊗A⊗A⊗q ⊗A→ Z2,

satisfying certain conditions (arising from spelling out the differential). By tensor-hom adjunction
these maps are in a one-to-one correspondence with maps (B(A,A,A)⊗AB(A,A,A))⊗AeA→ Z2

where Ae = A⊗Aop. Furthermore, there is a quasi-isomorphism

(B(A,A,A)⊗A B(A,A,A))⊗AeA→ Bcyc(A)

by applying the augmentation B(A,A,A) → A on the second factor. In particular, one can
always choose F such that Fpq = 0 for q ̸= 0.

In [9] a homotopy inner product F̃ on A := H•(S2,Z2) is constructed geometrically and
described in [9, Example 4.2]. It has non-zero components F̃0,0 as expected (given by the
Poincaré pairing on H•(S2)) and F̃2,0 with only non-zero component

F̃2,0(α⊗ α⊗ 1⊗ 1) = 1.

Proof of Theorem 1.3. We have checked that the map W : Bcyc(N•(S2))→ N•(S2)→ Z2 given
by evaluating against the fundamental class send 1 ⊗ α ⊗ α and α to 1. The homotopy inner
product F arising from precomposing with the projection (B(A,A,A) ⊗A B(A,A,A))⊗AeA →
Bcyc(A) has non-zero components F0,0 (easily seen to be the pairing H•(S2) ⊗ H•(S2) → Z2)
and F2,0. We check that

F2,0(α⊗ α⊗ 1⊗ 1) =W (1⊗ α⊗ α) = 1

and all other components vanish.

Acknowledgements

The first and third author would like to acknowledge the Hamilton Trust for their financial
support. We thank Pavel Safronov for useful discussions and Nathalie Wahl for the initial idea
of the project and for suggesting to use Ungheretti’s correction. We also thank the anonymous
referee for their careful review and valuable suggestions, which have improved the quality of this
work.



210 R. McGowan, F. Naef and B. O’Callaghan, Higher Structures 9(2):198–210, 2025.

References

[1] David Ayala and John Francis. Factorization homology of topological manifolds. Journal of
Topology, 8(4):1045–1084, 2015.

[2] Clemens Berger and Benoit Fresse. Combinatorial operad actions on cochains. In Math-
ematical Proceedings of the Cambridge Philosophical Society, volume 137, pages 135–174.
Cambridge University Press, 2004.

[3] Daniel Dugger. A primer on homotopy colimits. preprint, 2008.

[4] Gijs Heuts and Markus Land. Formality of En-algebras and cochains on spheres, 2024.

[5] John DS Jones. Cyclic homology and equivariant homology. Inventiones mathematicae,
87(2):403–423, 1987.

[6] Jean-Louis Loday. Cyclic homology. A Series of Comprehensive Studies in Mathematics.
Springer, Berlin, 1998.

[7] M. Mandell. Towards formality. mmandell.pages.iu.edu/talks/Austin3.pdf, 2009.

[8] James McClure and Jeffrey Smith. Multivariable cochain operations and little n-cubes.
Journal of the American Mathematical Society, 16(3):681–704, 2003.

[9] Kate Poirier and Thomas Tradler. A note on the string topology BV-algebra for S2 with
Z2 coefficients. arXiv preprint arXiv:2301.05381, 2023.

[10] Norman E Steenrod. Products of cocycles and extensions of mappings. Annals of Mathe-
matics, pages 290–320, 1947.

[11] Thomas Tradler. Infinity-inner-products on A-infinity-algebras. J. Homotopy Relat. Struct.,
3(1):245–271, 2008.

[12] Massimiliano Ungheretti. Free loop space and the cyclic bar construction. Bulletin of the
London Mathematical Society, 49(1):95–101, 2017.

mmandell.pages.iu.edu/talks/Austin3.pdf

	1 Introduction
	2 Hochschild Homology of H˙(S², ℤ₂)
	3 The Jones-Ungheretti isomophism
	4 Surjection Operad
	5 Proof of main theorems
	Acknowledgements
	References

