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Ryan McGowan?, Florian Naef® and Brian O’Callaghan®

“Trinity College Dublin, Dublin, Ireland

Abstract

We show that the Fj-equivalence C*(5?) ~ H*®(S?) does not intertwine the inclusion of constant
loops into the free loop space S? — LS?. That is, the isomorphism HH,(H*®(S?)) = H*(LS?)
does not preserve the obvious maps to H*(S?) that exist on both sides. We give an explicit
computation of the defect in terms of the E.-structure on C*(S?). Finally, we relate our
calculation to recent work of Poirier-Tradler on the string topology of S2.
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1. Introduction

For a simply connected space X, Jones (|5] and corrected in [12]) gives an isomorphism
g HHL(N*(X)) = H*(LX),

between the Hochschild homology of the (normalized) cochain algebra N*®(X), and the coho-
mology of the free loops space LX = Map(S!, X). As Hochschild homology only depends on
N*(X) as a dg-algebra (and not as an F.-algebra) one obtains that if X is Fj-formal there is

an isomorphism

¢: HHo(H®*(X)) = H*(LX).

Since H*(X) is a graded-commutative algebra there exists a natural map
f:HHo(H®* (X)) — H*(X).

On the geometric side the inclusion of constant loop X — LX induces a map

h: H*(LX) — H*(X).
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However, as explained by [12], the isomorphism ¢ uses the E-structure of N*(X) and thus it
does not follow that ¢ intertwines the two maps f and h, and indeed for X = S? this is not the
case.

Theorem 1.1. The diagram

HH, (H* (82, 7)) ——— H*(S2,7Zy)

H*(LS2,Zy) —— " H*(S2,Zy)
does not commute.

As the map HH(N®(X)) — H®*(N*(X)) can be expressed in terms of the E.-operations,
this in particular shows that N®(S?) is not Es-formal as an E..-algebra. Note that using fac-
torization homology (over the inclusion of an annulus into a disk, see for instance |1, Proposition

5.3]) one obtains that such an “augmentation map" only depends on the framed Es-structure on
N*(X). We thus obtain that

Corollary 1.2. The E-algebra N*(S?) is not formal as a framed Es-algebra (whereas it is
formal as an Es-algebra, see [7, 4]).

Let us briefly explain the relevance of the above to string topology. Evaluation on the fun-
damental class of S? gives a map H?(S?,Zy) — Zo. From the above we thus get two distinct
elements in Homy, (HHy(H®*(S2,Zy)), Zs), which we denote by F and F for the elements induced
by f and ho ¢, respectively. Recall that elements in Homg, (HHy(H*(S?,Z2)), Z2) can be identi-
fied with (homotopy classes of ) bimodule maps with higher homotopies H®(S?, Zs) — Ho(S?,Z>)
in the sense of Tradler [11]

Theorem 1.3. The bimodule map with higher homotopies F corresponding to
HHy (H*(S2, Z)) % H*(LS?, Z3) — Zs
coincides with the local bimodule map with higher homotopies constructed in [9].

Using different terminology we can interpret the above as follows. Given an F-algebra A
together with a map A — Zsg[d] (which we call the fundamental class) there is a canonical map
HH(A) - A — Zs|d] which we can ask to be a right Calabi-Yau structure. Note that in this
case the fundamental class is unique, so that we can say that E., algebras satisfying a version of
Poincaré duality have a canonical right Calabi-Yau structure. However, the Calabi-Yau structure
does not just depend on the underlying E;-algebra structure of A. For A = H®(S?,Zs) we obtain
two Calabi-Yau structures, one by considering A to be a commutative algebra and the other by
considering A as the Ey, cochain algebra on S2. The main result of [9] is then that the latter of
those two structures is the geometrically correct one.

1.1 Conventions. Throughout the article we will be exclusively working over Zs, so that
all of the signs are only there for “aesthetic” reasons. We denote by Ch the category of ho-
mologically graded chain complexes of Zs-modules, equipped with the structure of a closed
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monoidal symmetric category. The differential on the tensor product of two elements is given by
dz®y) =dr®y+x®dy. We denote the internal hom between two chain complexes X and Y
as Ch(X,Y’), which is itself a chain complex, that in degree n consists of linear maps of degree
n. The internal hom has differential (dy)(x) = do(x) + p(dx).

1.2 Organisation of the paper. Section 2 recalls the Hochschild complex over which we
primarily work. In section 3, we discuss the Jones-Ungheretti isomorphism, establish it in more
explicit detail for computational purposes, and the homotopy-coherent natural transformations
involved. Section 4 then translates this map into the language of the surjection operad of [2].
This allows for us to demonstrate both main theorems in Section 5.

2. Hochschild Homology of H*(S?,Z,)

Given an associative differential graded algebra A, the cyclic bar construction of A is the sim-
plicial cochain complex

BY(A): A —; Ch

n — A®n+1
with simplicial maps given by

§(ap® - a; ® aj11 ®an) =ap ® -+ ® ajaj41 @ -+  ay
6n(a0®®an) :ana0®...®an_1
0 ap®  Qap) =0 ® - a; V1 Qa1 QD ay

Hochschild homology HH(A) is then defined as the homology of the (direct sum) totalization of
Ne(A).

Let us now consider A = N*(S% Zy). More precisely, we let S? = A%/JA? be the simplicial
two-sphere, the triangulation of the sphere consisting of one unique non-degenerate 2-simplex,
one non-degenerate 0-simplex and no other non-degenerate simplices. Then we take simplicial
chains on S?. Note that in this case there is no differential, and we get that

N*(S?,Zs) = H*(S%,Zy),

as associative algebras with Alexander-Whitney product on the left (this is not true when con-
sidered as Eo-algebras which the main result of the paper will show).
Let a € H?(S?,Zs) denote the generator of H?(S?,Zs). By taking normalized chains we
obtain that
HH, (H*(5%,Z2)) = €D H* (5%, Z5) © H*(S%, Zs) "
n>0

)

that is, all the differentials vanish and we obtain that HHe(H*(S5?,Z2)) has a basis given by
elements of the form 1 ® a® --- @ a and a ® a ® - -+ ® «. In particular, we obtain

HHy(H®*(S?,Zs)) = Zoa  Zo(1 @ a @ ).
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3. The Jones-Ungheretti isomophism
We recall the construction of the isomorphism
HH((N®*(X,Z2)) = H*(LX,Z>),

given in [12].
We adopt the definition of the free loop space as the following simplicial mapping space (See
[6] and [5] for more details). Let S} = A!/GA! be the simplicial circle. We can then form the
cosimplicial space
G: [n] = Map(S}, X) = xt!

which totalizes to the free loop space LX. Applying normalized cochains we obtain a simplicial
cochain complex
G: A’ — Ch
[n] = N* (X",

which totalizes to cochains on LX assuming X is simply connected.

Theorem 3.1 (Ungheretti). There exists a zig-zag of equivalences of simplicial cochain complezes
BY¢(N*(X)) <~ QBY*(N*(X)) = G.
In particular, this induces an isomorphism
¢: HH,(N*(X)) = H*(LX),
i case X is simply-connected.

Here QB%°(N*(X)) is the standard resolution of a simplicial chain complex which we recall
below.

3.1 Homotopy Coherent Natural Transformations. We need to define our homotopy
coherent natural transformations, which underpin the construction of the mapping ¢ we require.
The following formulation comes from [12|, adapted from [3| to the context of chain complexes.

Definition 3.2. Let I be a small category.

1. Let F': I — Ch be an [-diagram in Ch. The standard simplicial resolution QeF of F is

given by
QnF(i): &y F(ig).
[io—+—in—i)|ENR(1/7)

We denote its geometric realization by QF': I — Ch.

2. Let F,G : I — Ch be two diagrams in Ch, we define the cosimplicial chain complex of
homotopy coherent natural transformations he(F, G)® : A — Ch as

he(F,G)" := Ch(QuF,G) = [[ Ch(F(io),G(in)),
GENLT
where the product runs over the nerve NI of I, that is all strings [ig — -+ — i, of

n-composable arrows. Let he(F, G) € Ch be the totalization of he(F, G)®.
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For every map 1 : + — y we can find a morphism Ay : F(x) — G(y) of degree one, and for
composed morphisms 0 : x — y — z we get a map of degree 2, Ag : F(x) — G(z). These maps
are not necessarily chain maps, but are subject to certain coherence arguments.

Example 3.3. Consider the category I = {a — b}, consisting of two objects a,b and one
non-identity morphism: a — b. Given F,G : I — Ch, one then finds that:

he(F, G)? =Ch(F(a), G(a)) ® Ch(F(b), G(b)),

he(F, G)! =Ch(F(a), G(b)),

he(F,G)" =0, forn > 2.
Note: This is the normalized cosimplicial chain complex, by taking the quotient of identity
morphisms, the unnormalized complex would contain additional summands in each degree.

We can then find some element o € he(F, G)! for every pair of elements (i, 1)) € he(F, G)° that
represents the failure to commute, that is

g —f =da.
Fla) —L— F(b)

. v

o

G(a) —2— G(b)

Let now I = A°P and let us spell out the definition of he(F, G) in more detail. For instance, a
0-cycle in the chain complex he(F, G) is given by (A%, A',...) where each A™ = (AG) ge N, (a0P)

is a collection of map A" a1 (i0) = G(im). They satisfy the recurrence relation

> (FAamh), = dAy (1)

where (67 Am*1)¢ considers the contraction of the degree m map ¢ into a degree m — 1 one by

[ip—+—t

“covering up” the j-th map: [ig = -+ — 4j_1 — ij41 — -+ — iy]. The precise structural maps

are
Flio) 202, b i) 292, Grin) if i =0,
(6"A)g = { F (i) 3 G (iny1) if0<i<n+l,
Fio) 202 G (i) SO G ) i =t 1
Let us denote by Tot(F') € Ch the (direct sum) totalization of F': A°® — Ch. We then

obtain a chain map
he(F,G) — Ch(Tot(QF), Tot(Q))). (2)

The following lemma exhibits an explicit natural section of the map Tot(QF') — Tot(F'). Let us
define (non-chain) maps

M*: he(F,G) — [ Ch(F (i + k), G(i))

by the formula (M*); = D iin A[Uz’17~--7aik] where o; are the face maps in A°P and

(000 ] =Lk 25 [k —1] = - = [+ 1] 25 []] € Nu(A%P)
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Lemma 3.4. The maps (M°, M*,...) define a chain map
M : he(F,G) — Ch(Tot(F), Tot(Q)),
natural in G and such that the composite
he(F,G) — Ch(Tot(F), Tot(G)) — Ch(Tot(QF), Tot(G))
is naturally homotopic to (2).

Proof. By definition of the differential on he(F, G) we obtain that

dMF = (Z F(ai)> o MF1 4 MF1o (Z G(m)) :

where all the intermediate terms vanish (using (3°, 0%) o (3 ; 07) = 0). But this is exactly the
differential on Ch(Tot(F), Tot(G)).

For the second part of the statement, let us first set G = F and let v € he(F, F') be the
element corresponding to the augmentation QF — F'. Then we have My(v) = id and My(v) =0
for £ > 0 and hence v is sent to the identity. The rest follows from naturality as follows. Let
: Tot(F) — Tot(QF) be the image of the identity Ch(QF,QF) under M. Then M for a
general G is given by hc(F,G) — Ch(Tot(QF), Tot(G)) followed with precomposition with ).
But v is a section of Tot(QF') — Tot(F') by the previous observation. O

Remark. The above argument could be streamlined a bit using the following. Let ch be the Zo-
linear category with objects the natural numbers and morphisms ch(i, i) = Zg, ch(i + 1,4) = Zo
and ch(i,j) = 0 otherwise. Taking unnormalized chains C, can then be seen as a functor
ch — ZoA°P. With this we obtain a map

Co(QF) = Co(B(Za AP, Zo AP, F)) < B(ch,ch,Ce(F)) = QCe(F),
Let F = BY¢(N*(X)) and G = N*(Map(S., X)) be as above.
Theorem 3.5. [Ungheretti] There exists a map ¢ € he(F,G) (canonical up to homotopy)
extending the Alexander-Whitney maps F(k — 1) = N*(X)®¢ — N*(X¥) = G(k —1). In
particular, we get an induced map
Tot(F) — Tot(G)

More precisely, for an E-operad X naturally acting on N°®(—) extending the (associative)
Alexander-Whitney product, [12] constructs a map of cosimplicial chain complexes

[[ xG+1)— J[ Ch@ve(Xx)ot No(Xt)) (3)
o= 9= —¥in
given by the following construction. For i9 — --- — 4,, denote ¢: ig — i, their composition and
let p= (p1,...,Pigr1): Xntt — X+l be the map induced by Map(S?, X). We then define the
map
X(ip + 1) — Ch(N*(X)H No (X tly)
0 ((a/lv v 7ai0+1) = 0(]71(@17 v 7pj;0+lai0+1)) .

The product of these maps over ig — --- — i, defines (3). Using contractibility of X he then

concludes that the Alexander-Whitney maps extend to a unique up to homotopy element on the
left hand side.
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3.2 Unpacking. Recall that our main interest is in the composition
U HHy(N*(S?)) = H%(Tot(G)) = H2(Tot(N*(Map(SL, $%))) — H2(S?),

where the second map is induced from the map {pt} — S! and hence is given by the projection
Tot(G) — G(0). Moreover, we have seen that there are two classes; 1 ® @ ® a and «, both of
which can be represented by cycles in the total complex of F<2 = (F(2) — F(1) — F(0)). It
will thus suffice to unpack the restriction of the above map M : Tot(F) — Tot(G) to Tot(F=2).
That is we want to describe the maps M in the diagram

0

N*(52)93 = F(2) — 2 G(2) = N*(52 x 52 x 52)

0 \ M é

— G(1) = N*(S2 x §2)

M}
1 M& 6=0
o/ Q2\ __ _ o/ Q2
N*(82) = F(0) — ey G(0) = N*(%)

satisfying

dM® + M°d =0
dM* + M'd = 6M° + M°5
dM? + M?*d = §M* + M's.
Spelling out the formula in Lemma 3.4 we obtain that M? = A? are given by the Alexander-

Whitney products. For the other maps, let us denote by 0,01 the two face maps [1] — [0] €
A°P([1],0]) and by v, v1, v2 the face maps [2] — [1] € A°P([2],[1]). We then obtain from Lemma

3.4
‘1\401 = Acl)'o - A(1717 (4)
M| = A, — A, + A4, (5)
Mg =) Ay (6)
irj
where
A =A%, . N°(X)® - N*°(X).
J S50 (X) (X)

The A™'s (and hence the M"™’s) are iteratively constructed as the (homotopically) unique
solution of equation (1) holding on the left hand side of (3). We now describe a particular choice
of (some of) the A™’s. For simplicity of notation we will (abusively) denote an element in the
source of (3) by its image. That abuse can alternatively be justified by the fact that (3) is
injective for general enough X.

Lemma 3.6. We can choose

Al =

g0

AL =—1: N*(X)®? - N*(X),
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where —1€ X (2) is satisfying
d(—1) = — —o(12),

where —¢€ X (2) is the associative Alexander-Whitney product and — o(12) is the image under
the transposition (12) acting on X (2).

Proof. Recall from the proof in [12] that A}Ti are constructed by first verifying that 6 o M —
MY o 5t: N*(X)®? — N°*(X) is induced by an element in X' (2) which is closed in X'(2). Here
d% are the coboundary maps on F' and G, respectively. Then A;i is a primitive of that element
(which exists by contractibility of X'(2)). For i = 0 we are getting that §° — MY5° = 0. More
precisely, we check that the following diagram commutes

V()2 M Ne(x x X) a®b ——s wi(a) — 75 (b)
50 lA* l l
N*(X) ——— N*(X) a—b—sa—b

where 7 denotes the pullback from the i-th copy of X onto X x --- x X and the map 50
is the 0-th boundary in the Hochschild complex, i.e. the Alexander-Whitney multiplication on
N*(X). For the map A* we have that by naturality of the cup product

A*(7q(a) — w3 (b)) = A% () (a) — A™(73)(b)
= (m o A)*(a) — (w20 A)*(b)
=a—b.

For the case ¢ = 1 a similar computation using that the 1-st boundary on the Hochschild complex

is the multiplication in opposite order shows that

(06 — M) (z,y) =y — & —z —y. O
Remark. Note that —; exists by contractibility of X(2). There is also a well-known formula
for it (see [10]).
Lemma 3.7. The map Mg is induced by V € X(3) where V satisfies

av =U
and U € X (3) is the operation
Ulz,y,2) =(x—y)—1z+x—1(y—2)+(z—x) =1y

Proof. Note that dM3 = —MJé = A;ld =1 od. It remains to verify that this equation holds
in X(3) and not merely in Ch(F(2),G(0)). By definition we have that M3 = > ;Aij and the
A, j are induced by elements in X'(3) which we abusively denote by the same symbols. The A; ;
satisfy
dA; ;= 6LAL + AL 6%

According to the proof in [12] the right hand side is induced by an closed element in X' (3). Let us
find the corresponding element for (i,5) = (1,1) and (¢,7) = (¢,0), the other case being similar.
For the first term 03 A, , let A be induced by o1 € X(3) by the formula

N*(X)® — N*(X x X)
(a,b,¢) = o1(pi(a), p3(b), p3(c)).
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where (p1,p2,p3)(2,y) = (z,y,y). As 6, = A* we compute that

Aro1(pi(a), pa(b), p3(c)) = o1 (A™pi(a), A™py(b), A™ps(c)) = 01(a, b, ¢),

and hence 65 A} is induced by o1. For the second term we directly see (using that AL =—1)
that
A}TI(S};(@, b,c) =a—1 (b— c).

We conclude that dA;; is induced by the operation
(a,b,c) — o1(a,b,c) + (a—1 (b — c)).
Likewise, we obtain that dA; o = 500A11,1 is induced by
(a,b,c) — o1(a,b,c)

where we used that (5% = 55. In particular, we observe that the o; term cancels when we sum
over 7 = 0,1 and we obtain the desired result. O

4. Surjection Operad

We now wish to solve the equation

AV =U € X(3),

explicitly and evaluate V(1®a®a) for X = S2. We shall use the surjection operad, as defined in
[2], as the model for X', which we briefly recall. Note that for our purposes we need not consider
signs (which are discussed in detail in loc. cit) so we have omitted them in the formulas for the
differential and operadic composition.

Definition 4.1 (Surjection Operad). The surjection operad X is the operad where each module
X (r)q is generated by the non-degenerate surjections w : {1,...,r +d} — {1,...,r}. Non-
surjective maps represent the zero element in X(r)y. Each map w: {1,...,r +d} — {1,...,7}
can be represented by a sequence (u(1),...,u(r +d)). A surjection is degenerate when for some
1 <i<r+dwe have u(i) = u(i + 1).

The differential is given by 0 : X (). — X (r)s—1

7’+d —

S(u(1),...,u(r+d) = (u(1),...,u(@),...,u(r+d))

i=1

which gives the structure of a complex.
Example 4.2. Consider the element (4,3,1,2,1,3,5,2) € X(5)3. The differential is then given
by

0(4,3,1,2,1,3,5,2) = (4,1,2,1,3,5,2) + (4,3,2,1,3,5,2) + (4,3,1,2,3,5,2)

+(4,3,1,2,1,5,2) + (4,3,1,2,1,3,5).

Example 4.3. The module X(2) is spanned by (1,2), (1,2,1), (1,2,1,2),... and (2,1), (2,1, 2),
(2,1,2,1),..., where the latter are obtained from the former using the action of the transposition
(12). As explained in |2, Section 2.2.8|, the induced operations on Ne(X) are the classical ~—;-

products. For instance, the equation §(1,2,1) = (1,2)—(2, 1) translates to d(~—1) =— —— o(12).
We will thus denote (1,2,1) by —1.
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Definition 4.4. Operadic composition is a map X (r)g® X (s)e = X (r+ s —1)44¢ for a product
uopv € X(r+ s —1)44e by substituting occurrences of k in (u(1)---u(r 4+ d)) with elements of
(v(1), - ,v(s+e)).

Assume that k& has n occurrences in (u(1),--- ,u(r +d)). We then consider every splitting of
(v(1), -+ ,v(s+e€)) into n components

(0 (o), v(n) (), v(2) - (©Un-1),- v (Gn))

where 1 = jo < j1 < jo <...<jp-1 < jn = s+e. Then for every value i,, such that u(i,,) = k,
replace it by the m-th component (v (jm—1),...,v(jm)), we then increase the terms v(j) by
k—1, and terms u(i) > k by s — 1. We then take the sum of the results of all possible splittings.

Example 4.5. We calculate (2,3,2,1) oy (4,3,4,1,2). We have five possible splittings of v =
(4,3,4,1,2) into 2 parts, given by
4)(4,3,4,1,2)

(

(4,3)(3,4,1,2)
(4,3,4)(4,1,2)
(4,3,4,1)(1,2)
(4,3,4,1,2)(2).

Then, once we consider the shifts required, we get that

(2,3,2,1) 05 (4,3,4,1,2) = (5,6,5,4,5,2,3,1) + (5,4,6,4,5,2,3,1) + (5,4,5,6,5,2,3,1)
+(5,4,5,2,6,2,3,1) + (5,4,5,2,3,6,3,1).

Example 4.6. Similarly, we obtain presentations for the operations (x — y) —1 z and = —;
(y — z). Namely,

(1,2,1) 01 (1,2) = (1,3,1,2) + (1,2, 3,2),
(1727 1) 02 (L 2) = (172>3a 1)

Proposition 4.7. We can represent
U=1(1,3,1,2)+(1,2,3,2) + (1,2,3,1) + (3,2,3,1) + (3,1,2,1).

Proof. Rewriting U given in Lemma 3.7 as an element of the surjection operad, we obtain
U=(1,2,1)01(1,2) +(1,2,1) 02 (1,2) + ((1,2,1) 01 (1,2)) o 7,

where ((1,2,1)01(1,2))o7 is obtained by applying the inverse of the standard 3-cycle to (1,2, 1)oq
(1,2). Using the above example this gives the claimed formula for U. O

We are now ready to solve dV = U for V using similar ideas to [8] by appending the digit 3
to each of our terms to give a solution.

Proposition 4.8. We can take
V=(3,1312)+(3,1,2,3,2) +(3,1,2,3,1)

Proof. Standard calculation of the differential verifies it satisfies the relation dV = U. O
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As explained in [2] the surjection operad naturally acts on normalized chains by a generalized
Alexander-Whitney formula (called the interval cut operation)

AW : X(n) @ No(X) — No(X)®™
and hence by taking the linear dual the element V' defines
MZ: N*(X)®? — N*(X),

which we wish to evaluate on X = S2.
We compute AW (V) on the unique non-degenerate 2-simplex, es € N2(S?).

Proposition 4.9.

AW((3, 1,3,1, 2))(62) =er®ey® e
AW((3,1,2,3,2))(e2) = eg ® €2 @ €2
AW ((3,1,2,3,1))(e2) = e2 ® e ® ea.

Proof. We calculate these maps using the interval cut operation of [2]. For example, we consider
the interval cut associated to (3,1,2,3,1):

Figure 1: Interval cut of (3,1,2,3,1).
which gives

A(?’Ll ng, N4 715) (29 A(ng ____TL3> [ A(O____nl, n3 n4)

where we then use the dimension of these simplices and the uniqueness of non-degenerate sim-
plices to give
AW((3, 1,2,3, 1))(62) =e3® ey R es.

The other two computations follow similar steps. O

Corollary 4.10. MZ(1® a ® a) = a.

5. Proof of main theorems
Proposition 5.1. The map ¥: HHy(N®(S?)) — N2(S?) sends
VI®a®a)=o.

Proof. We have seen in previous section that ¥(1 ® a ® a) = MZ(1 ® a ® a) which we just
computed. ]
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Proof of Theorem 1.1. First note that for the simplicial S? we have that N*(S?) = H*(S?) as
algebras, which “implements” E;-formality of S2. In the diagram

HH, (N*(S52)) —L H*(5?)

J H

H'(LS2) h H'(S2)

we have just computed the composition ¥ = h o ¢ and shown that it is non-zero on 1 ® a ® a.
The map f arises from the fact that N*®(S?) happens to be commutative, so that Hochschild
homology has an augmentation given by projecting onto the A-summand. In particular, it maps
1® a® a to zero. O

To show Theorem 1.3 let us first recall terminology from [11|. An A-bimodule map up to
homotopy is defined to be (a homotopy class of) a chain map of A-bimodules

F:B(A, A A) ®4 B(A, A, A) — Homy, (A, Z2)
where B(A, A, A) is the two-sided bar resolution. Such a map has components
Fpg: AP @ A® A © A — I,

satisfying certain conditions (arising from spelling out the differential). By tensor-hom adjunction
these maps are in a one-to-one correspondence with maps (B(A4, A, A)®@aB(A, A, A))gae A — Zo
where A° = A ® A°P. Furthermore, there is a quasi-isomorphism

(B(A, A, A) @4 B(A, A, A))gac A — BY(A)

by applying the augmentation B(A, A, A) — A on the second factor. In particular, one can
always choose F' such that Fj,, = 0 for ¢ # 0.

In [9] a homotopy inner product F on A := H*(S? Zy) is constructed geometrically and
described in [9, Example 4.2]. Tt has non-zero components Fgq as expected (given by the
Poincaré pairing on H*(S5?)) and ]?‘270 with only non-zero component

ngo(a®a®1®1):1.

Proof of Theorem 1.3. We have checked that the map W: BY°(N®(S?)) — N*(S?) — Zs given
by evaluating against the fundamental class send 1 ® o ® a and a to 1. The homotopy inner
product F' arising from precomposing with the projection (B(A, A, A) ®4 B(A, A, A))gaeA —
B%¢(A) has non-zero components Fp (easily seen to be the pairing H®*(S?) @ H®(S?) — Zs)
and Fy 9. We check that

FQ,O(Q®OZ®1®1):W(1®Q®O{):1

and all other components vanish. O
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